The main targets for using the edge detection techniques in image processing are to reduce the number of features and find the edge of image based-contents. In this paper, comparisons have been demonstrated between classical methods (Canny, Sobel, Roberts, and Prewitt) and Fuzzy Logic Technique to detect the edges of different samples of image's contents and patterns. These methods are tested to detect edges of images that are corrupted with different types of noise such as (Gaussian, and Salt and pepper). The performance indices are mean square error and peak signal to noise ratio (MSE and PSNR). Finally, experimental results show that the proposed Fuzzy rules and membership function provide better results for both noisy and noise-free images.
Plagiarism Detection Systems play an important role in revealing instances of a plagiarism act, especially in the educational sector with scientific documents and papers. The idea of plagiarism is that when any content is copied without permission or citation from the author. To detect such activities, it is necessary to have extensive information about plagiarism forms and classes. Thanks to the developed tools and methods it is possible to reveal many types of plagiarism. The development of the Information and Communication Technologies (ICT) and the availability of the online scientific documents lead to the ease of access to these documents. With the availability of many software text editors, plagiarism detections becomes a critical
... Show MoreIn this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e
... Show MoreIn this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.
Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
Improving the performance of visual computing systems is achieved by removing unwanted reflections from a picture captured in front of a glass. Reflection and transmission layers are superimposed in a linear form at the reflected photographs. Decomposing an image into these layers is often a difficult task. Plentiful classical separation methods are available in the literature which either works on a single image or requires multiple images. The major step in reflection removal is the detection of reflection and background edges. Separation of the background and reflection layers is depended on edge categorization results. In this paper a wavelet transform is used as a prior estimation of background edges to sepa
... Show MoreMerging images is one of the most important technologies in remote sensing applications and geographic information systems. In this study, a simulation process using a camera for fused images by using resizing image for interpolation methods (nearest, bilinear and bicubic). Statistical techniques have been used as an efficient merging technique in the images integration process employing different models namely Local Mean Matching (LMM) and Regression Variable Substitution (RVS), and apply spatial frequency techniques include high pass filter additive method (HPFA). Thus, in the current research, statistical measures have been used to check the quality of the merged images. This has been carried out by calculating the correlation a
... Show MoreIn this study, a chaotic method is proposed that generates S-boxes similar to AES S-boxes with the help of a private key belonging to
In this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the produ
... Show MoreGypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image
... Show MoreImage content verification is to confirm the validity of the images, i.e. . To test if the image has experienced any alteration since it was made. Computerized watermarking has turned into a promising procedure for image content verification in light of its exceptional execution and capacity of altering identification.
In this study, a new scheme for image verification reliant on two dimensional chaotic maps and Discrete Wavelet Transform (DWT) is introduced. Arnold transforms is first applied to Host image (H) for scrambling as a pretreatment stage, then the scrambled host image is partitioned into sub-blocks of size 2×2 in which a 2D DWT is utilized on ea
... Show MoreMost of today’s techniques encrypt all of the image data, which consumes a tremendous amount of time and computational payload. This work introduces a selective image encryption technique that encrypts predetermined bulks of the original image data in order to reduce the encryption/decryption time and the
computational complexity of processing the huge image data. This technique is applying a compression algorithm based on Discrete Cosine Transform (DCT). Two approaches are implemented based on color space conversion as a preprocessing for the compression phases YCbCr and RGB, where the resultant compressed sequence is selectively encrypted using randomly generated combined secret key.
The results showed a significant reduct