Predicting weather by numerical models have been used extensively in research works for Middle East, mostly for dust storms, rain showers, and flash floods with a less deal of interest on snow precipitation. In this study, the Global/Regional Integrated Model System (GRIMs) that was developed in South Korea was used to predict a rare snowfall event occurred in three countries in Middle East (Syria, Jordan and Iraq) located between (25-65 oE; 12-42 oN) in year 2008. The main aim of this study was to test GRIMs efficiency, which would be used for the first time in Middle East, to make predictions of weather parameters such as pressure, temperature, and relative humidity especially in the selected area. In addition, the study would investigate the conditions that caused the snowfall event. GRIMs model was installed, compiled, and run on a Linux platform by using NCEP-NCAR reanalysis dataset as initial conditions on 0.5 × 0.5 grid resolution to make simulations for three days at intervals of three hours. The output of the model was evaluated by making comparisons with actual data obtained from the GFS Agency dataset and the model showed its efficiency. The snowfall event was synoptically discussed in details. It was found that the snowfall event was a result of fast succession systems of a strong cold high pressure and then a deep warm low pressure. The high instability in the region had led to form large cumuliform clouds with snow precipitation as a rare event in very long period.
One of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing pr
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreThis paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreThe presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show More