The sun which is all energy sources, in today's society, hot water is used for various purposes starting from household to power production. People are adopting various ways to accomplish these goals, such as firewood heat and electrical power, so solar energy is an alternative to the dwindling resources of fossil fuels. Conversion of solar radiation into heat is one of the simplest and most direct applications of this energy, it can be used to heat water systems. A widely used flat-plate solar collector. In this study we have come to heat water using solar energy. This research presents the design and experimental analysis for using Spiral Flow Solar Water Heater (SFSWH) to enhance the thermal efficiency of a flat plate solar collector. Where a solar water heater consists of a copper tube in the shape of a spiral is fixed on an iron flat plate as an absorber. The experiment also includes the selection quality of the paint used to dye the absorbent surface. In May at Fallujah (33.34ºN, 43.8ºE), the thermal performance was calculated. The maximum temperature difference in the storage tank of about 18 ℃ for (SFSWH) during the experimental time was obtained. The efficiency of the collector was obtained is about (80.11%). Where it gives an increase (40 %) in its efficiency compared to published values.
Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa
This paper describes theoretical modeling of electrostatic mirror based on two cylindrical electrodes, A computational investigation has been carried out on the design and properties of the electrostatic mirror. we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The beam path by using the Bimurzaev technique have been investigated as a mirror trajectory with the aid of Runge – Kutta method. the electrode shape of mirror two electrode has been determined by using package SIMION computer program . The spherical and chromatic aberrations coefficients of mirror has been computed and normalized in terms of the focal length. The choice of the mirror depends on the op
... Show MoreA concept of indoor solar illumination is described and simulated. The solar illumination system is composed of a tracking primary reflector, a selective secondary reflector, a visible light guide and a scattering solid glass tube fixture. Each part of the solar illumination system is optically suited and compatible with other parts to realize high efficiency. The simulation is conducted for Baghdad city for a library hall. Two major days over a year are chosen to investigate the illumination system for acceptable visible light level for reading hall. The two days are: summer solstice day and winter solstice day at 8:00 AM and 12:00 PM for each. Research results showed that the design of the solar system is achieved on the base of minimu
... Show MoreThe manuscript should contain an abstract. The abstract should be self-contained and citation-free and should not exceed 200 words. The abstract should state the purpose, approach, results and conclusions of the work. The author should assume that the reader has some knowledge of the subject but has not read the paper. Thus, the abstract should be intelligible and complete in it-self (no numerical references); it should not cite figures, tables, or sections of the paper. The abstract should be written using third person instead of first perso The fast microwave assisted pyrolysis (FMWAP) of water hyacinth (WH) for biochar production is investigated. Taguchi’s method was used to optimize FMWAP parameters. The effects of microwave
... Show MoreDielectric measurements were carried on pure and doping potassium sulfate with copper and iron ions samples at 1wt.% and 3wt.% for both of copper and iron. The dielectric constant (ε') decreases exponentially from 2.8 to 1.5 as frequency increase for both dopant which is attributed to the space charge and structural distortion. The dielectric loss (ε") for Cu dopant decrease gradually with frequency. The same behavior for 1%Fe dopant while its 3%Fe doping started from 0.27 then decrease exponential. Band gaps for all samples almost constant around 6 eV.
This research evaluates the optical properties of an inhomogeneous and non-paraxial system using a solar ball lens (SBL) as a new thermal solar concentrated collector. This evaluation is based on detecting a diacaustic curve in a straightforward and accurate manner, with the diagnostic relying on image processing as a computational tool using the MATLAB program rather than a complicated numerical analytic procedure. The circle of least confusion (CLC) of the (SBL), (Fluorinated ethylene propylene (FEP) polymer – water core), was calculated. Furthermore, the study evaluated the maximum geometrical concentration ratio (G C) of refracted solar radiation that can be captured by a receiver of the (SBL). Without energy losses due
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show More