So muchinformation keeps on being digitized and stored in several forms, web pages, scientific articles, books, etc. so the mission of discovering information has become more and more challenging. The requirement for new IT devices to retrieve and arrange these vastamounts of informationaregrowing step by step. Furthermore, platforms of e-learning are developing to meet the intended needsof students.
The aim of this article is to utilize machine learning to determine the appropriate actions that support the learning procedure and the Latent Dirichlet Allocation (LDA) so as to find the topics contained in the connections proposed in a learning session. Ourpurpose is also to introduce a course which moves toward the student's attempts and which reduces the unimportant recommendations (Which aren’t proper to the need of the student grown-up) through the modeling algorithms of the subjects.
This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.
This paper aims to introduce the concepts of -closed, -coclosed, and -extending modules as generalizations of the closed, coclossed, and extending modules, respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.
The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreA three-dimensional (3D) model extraction represents the best way to reflect the reality in all details. This explains the trends and tendency of many scientific disciplines towards making measurements, calculations and monitoring in various fields using such model. Although there are many ways to produce the 3D model like as images, integration techniques, and laser scanning, however, the quality of their products is not the same in terms of accuracy and detail. This article aims to assess the 3D point clouds model accuracy results from close range images and laser scan data based on Agi soft photoscan and cloud compare software to determine the compatibility of both datasets for several applications. College of Scien
... Show MoreIn this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
The current research aims to find out ( the effectiveness of the structural model of learning in the acquisition of geographical concepts at the first grade average students ) , and achieving the goals of research has been formulating the null hypothesis of the following :
" There is no difference statistically significant when Mistoi (0.5 ) between the mean scores of the collection of students in the experimental group that is studying the general geographical principles " Bonmozj constructivist learning " and the mean scores of the control group , which is considering the same article ," the traditional way " to acquire concepts.
The researcher adopted th
... Show More
Abstract
This study aims to identify the degree to which the first cycle teachers use different feedback patterns in the e-learning system in addition to the differences in the degree of use according to specialization, teaching experience, and in-service training in the field of classroom assessment, as well as the interaction between them. The study sample consisted of (350) female teachers of the first cycle in government schools in Muscat Governorate for the academic year 2020/2021. The study used a questionnaire that contained four different patterns of feedback, which are reinforcement, informative, corrective, and interpretive feedback. The psychometric properties of the que
... Show More