Surface plasmon resonance could increase the efficiency of solar cells , when light is trapped by the noble metallic nanoparticles arrangement at and into the silicon solar cell (SSC) surface. Pure noble metal (silver and gold) nanoparticles (NPs) have been synthesized as colloids in de-ionized water (DW) by pulsed laser ablation (PLA) process at optimum laser fluence. Silicon solar cell with low efficiency was converted to plasmonic silicon solar cell by overcasting deposition method of silver nanoparticles on the front side of the SSC. The performance of plasmonic solar cell (PSC) was increased due to light trapping. Two mechanisms were involved : inserting silver nanoparticles (Ag NPs) inside the silicon layer by the heating effect of pulsed laser and depositing gold nanoparticles (Au NPs) on the surface of the SSC by overcasting method. The optical properties of silver and gold colloidal solutions were studied with UV- Visible spectrophotometer with a range from 190 nm to 1100 nm. The absorption spectra showed single absorption peak located at about the characteristic value for silver and gold nanoparticles due to the surface plasmon resonance. Atomic Force Microscope (AFM) images were studied , the ablated noble NPs by pulsed laser have an average diameter less than 100 nm. AFM images showed the morphology of SSC surface without and with nanoparticles before and after overcasting and heating by laser methods. Electrical measurements for SSC namely current – voltage ( I-V )characteristics and responsivity (Rλ) displayed higher efficiency after these procedures. The efficiency rise to(5.2%) due to the localized surface plasmons excitation of (Ag NPs) that were embedded into the silicon layer by the heating effect of pulsed laser. The deposition of AuNPs on the silicon surface of the plasmonic SC additionally increased the efficiency to (7.28%), due to light trapping by scattering from Au NPs towards the plasmonic solar cell depth .
As part of our research on efficiency improvement of PERC (Passivated Emitter Rear Solar Cell), achieving very low reflectivity values of solar cell surface is a must. One of the most advance technologies to do so is the use of advanced texturing for the front surface of the cells. This texture, also known as Black Silicon, consists of peaks and valleys of nano metric dimensions and capable of dramatically reducing the reflectance of the front surface. A reflectance around 5% was reached ,using simulation, when using a Black-Silicon texturing with height of 50nm with peak rounding of 5nm. Even though this texturing may affect other parameters such as series resistance or surface recombination, as a starting point
... Show MorePraise be to God, Lord of the worlds, and peace and blessings be upon our master Muhammad and his family and companions as follows:
This research examines altruism in the Noble Qur’an objectively. The altruism is a word that permeates selection, preference, presentation, types of gifts, and all other material and moral virtues. It is the highest level of generosity and generosity, provided that the consent of God Almighty is enriched on the consent of others, and that greatness arises in it, and that creation affects On yourself in what does not deprive you of a religion, and it does not cut you off on a path, because the praiseworthy altruism is only in relation to souls, not the disgraced altruism tha
The n-type Au thin films of 500nm thickness was evaporated by thermal evaporation method on p-type silicon wafer of [111] direction to formed Au/Si heterojunction solar cell. The AC conductivity, C-V and I-V characteristics of fabricated c-Au/Si diffusion heterojunction-(HJ) solar cell, has been studied. The first methods demonstrated that the AC conductivity due to with diffusiontunneling mechanism, while the second show that, the heterojunction profile is abrupt, the heterojunction parameters have been played out, such as the depletion width, built-in voltage, and concentration. And finally the third one show that the c-Au/Si HJ has rectification properties, and the solar cell yielded an open circuit voltage of (Vic) 0.4V, short circuit c
... Show MoreNowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreThe Topography, Physical and Optical properties of as-deposited copper oxide CuO absorption layer sprayed using homemade fully computerized CNC spray pyrolysis deposition technique at different deposition speed are reported. These layers are characterized by UV-Visible spectrophotometer, optical microscope, and thickness monitor studies. The optical transmittance study indicates that these layer exhibit high absorption coefficient in the visible range. The optical band gap is found to be at about at speeds (3,6 mm/s). Better homogeneity in CuO layer is found at the speed 5 mm/s. The film thickness lies within the 129-412 nm range.
A mathematical model was created to study the influences of Hall current and Joule heating with wall slip conditions on peristaltic motion of Rabinowitsch fluid model through a tapered symmetric channel with Permeable Walls. The governing equations are simplified under low Reynolds number and the long-wavelength approximations. The perturbation method is used to solve the momentum equation. The physiological phenomena are studied for a certain set of pertinent parameters. The effects offered here show that the presence of the hall parameter, coefficient of pseudo-plasticity, and Hartman number impact the flow of the fluid model. Additional, study reveals that a height in the Hall parameter and the velocity slip parameter incre
... Show MoreAn analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.
The CIGS/CdS p-n junction thin films were fabricated and deposited at room temperature with rate of deposition 5, and 6 nm secG1 , on ITO glass substrates with 1mm thickness by thermal evaporation technique at high vacuum pressure 2×10G5 mbar, with area of 1 cm2 and Aluminum electrode as back contact. The thickness of absorber layer (CIGS) was 1 µm while the thickness of the window layer CdS film was 300 nm. The X-ray Diffraction results have shown that all thin films were polycrystalline with orientation of 112 and 211 for CIGS thin films and 111 for CdS films. The direct energy gaps for CIGS and CdS thin films were 1.85 and 2.4 eV, respectively. Atomic Force Microscopy measurement proves that both films CIGS and CdS films have nanostru
... Show More