Image segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means clustering algorithm is proposed for image segmentation. The presented method uses Particle Swarm Intelligence (PSO) for determining the initial centres based on Li’s method. These initial centroids are then fed to the K-Means algorithm to assign each pixel into the appropriate cluster. The segmented image is then given to a region growing algorithm for regions isolation and edge map generation. The experimental results show that the proposed method gives high quality segments in a short processing time.
The usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu
... Show MoreIn this article, the inverse source problem is determined by the partition hyperbolic equation under the left end flux tension of the string, where the extra measurement is considered. The approximate solution is obtained in the form of splitting and applying the finite difference method (FDM). Moreover, this problem is ill-posed, dealing with instability of force after adding noise to the additional condition. To stabilize the solution, the regularization matrix is considered. Consequently, it is proved by error estimates between the regularized solution and the exact solution. The numerical results show that the method is efficient and stable.
In this paper, an algorithm for binary codebook design has been used in vector quantization technique, which is used to improve the acceptability of the absolute moment block truncation coding (AMBTC) method. Vector quantization (VQ) method is used to compress the bitmap (the output proposed from the first method (AMBTC)). In this paper, the binary codebook can be engender for many images depending on randomly chosen to the code vectors from a set of binary images vectors, and this codebook is then used to compress all bitmaps of these images. The chosen of the bitmap of image in order to compress it by using this codebook based on the criterion of the average bitmap replacement error (ABPRE). This paper is suitable to reduce bit rates
... Show MoreA seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjus
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show MoreThe majority of systems dealing with natural language processing (NLP) and artificial intelligence (AI) can assist in making automated and automatically-supported decisions. However, these systems may face challenges and difficulties or find it confusing to identify the required information (characterization) for eliciting a decision by extracting or summarizing relevant information from large text documents or colossal content. When obtaining these documents online, for instance from social networking or social media, these sites undergo a remarkable increase in the textual content. The main objective of the present study is to conduct a survey and show the latest developments about the implementation of text-mining techniqu
... Show MoreThis paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering , and are real numbers between 0 and 1.
This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC) slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength,
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.