Image segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means clustering algorithm is proposed for image segmentation. The presented method uses Particle Swarm Intelligence (PSO) for determining the initial centres based on Li’s method. These initial centroids are then fed to the K-Means algorithm to assign each pixel into the appropriate cluster. The segmented image is then given to a region growing algorithm for regions isolation and edge map generation. The experimental results show that the proposed method gives high quality segments in a short processing time.
In this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We derived posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the
... Show MoreA comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro
... Show MoreIn this study, different methods were used for estimating location parameter and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment estimation (ME),and approximation estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile as estimation for distribution f
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreThe comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show MoreAbstract
We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar
... Show More