Evapotranspiration (ET) is produced from vegetation transpiration and soil evaporation. The ET measurements must be considered to study water management systems and irrigation (planning, designing and operating). This study is based on USGS (United States Geological Survey) data by the SSEBop (Simplified Surface Energy Balance) model to estimate the total annual amount of ET using ArcGIS software. The ET values were determined for seventeen years from 2003 to 2019. Also, these values for year 2020 were estimated based on the value of the monthly ET for seven months, i.e. until August by summation. The field data of gauge stations spread throughout Iraq for the year 2012 were used to verify the ET values for the same year. There was distinct compatibility between them. For the four years 2017, 2018, 2019 and 2020, the area of zero ET was a little more than half the area of Iraq (56%). While the years from 2003 to 2016, the average percentage of the area was about 24% of Iraq’s area. For classification for ET values 0 - 50 mm, the area percentage was 29% of total area for years from 2003 to 2016, while from 2017 to 2020 the percentage was 10%. The ET values of 50-100 mm have an area ratio of 12% of total area for years 2003 to 2016, while the percentage was 4% for the remaining years. For all years of study, the area percentage was approximately the same for ET values greater than 100 mm. The study recommends increasing the water quotas and speeding up the construction of strategic projects in Iraq to compensate the shortage of vegetation cover, especially in last the four years, more than half of the area had ET values equal to zero.
Coupling reaction of 2-amino benzoic acid with 8-hydroxy quinoline gave bidentate azo ligand. The prepared ligand has been identified by Microelemental Analysis,1HNMR,FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (ZnII,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes have been characterized by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range
... Show MoreThe ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d
... Show MoreThis paper presents comprehensive analysis and investigation for 1550nm and 1310nm ring optical modulators employing an electro-optic polymer infiltrated silicon-plasmonic hybrid phase shifter. The paper falls into two parts which introduce a theoretical modeling framework and performance assessment of these advanced modulators, respectively. In this part, analytical expressions are derived to characterize the coupling effect in the hybrid phase shifter, transmission function of the modulator, and modulator performance parameters. The results can be used as a guideline to design compact and wideband optical modulators using plasmonic technology
Background: Enforcement of sustainable and green chemistry protocols has seen colossal surge in recent times, the development of an effective, eco-friendly, simple and novel methodologies towards the synthesis of valuable synthetic scaffolds and drug intermediates. Recent advances in technology have now a more efficient means of heating reactions that made microwave energy. Efforts to synthesize novel heterocyclic molecules of biological importance are in continuation. Microwave irradiation is well known to promote the synthesis of a variety of organic and inorganic compounds. The aim of current study was to conceivea mild base mediated preparation of novel Schiff base of 2-Acetylpheno with trimethoprim drug (H2TPBD) and its complexes w
... Show MoreThe current study was carried out at the Fields belongs of Horticulture Department, Collage of Agricultural Engineering Science, University of Baghdad, Al-Jadiriyah for the spring season 2016 -2017 to study the effect for inoculation mycorrhizae and folair application with bio stimulators and their interaction in the growth characters of (local okra ptera). A factorial experiment (2 in randomized complete block design (RCBD), the experiment included (12) treatment Distributed in three replicates. The three factors used in this experiment included . The inoculation with control (C) Mycorrhizae ( M ) , Biozyme (B ) ( B1 2cm3.L-1), ( B2 4cm1-.L-1) , Phosphalas (P) (P 2cm3.L-1), ( M + B1), ( M + B2), (P +
... Show MoreAn optical spectroscopic study is reported in this article to study the correlation between the supermassive black hole (SMBH) and the star formation rate (SFR) for a sample of Seyfert galaxies type (I and II). The study focused on 45 galaxy of Seyfert 1, in addition to 45 galaxy of Seyfert 2, where these samples have been selected form different survey of Salon Digital Sky Survey (SDSS). The redshift (z) of these objects were between (0.02 – 0.26). The results of Seyfert 1 galaxies shows that there good correlation between the SMBH and the SFR depending on statistical analysis parameter named Spearman’s Rank Correlation in a factor of (ρ=0.609), as well as the Seyfert 2 galaxies results show a good correlation between the SMBH
... Show MoreIn the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
A program using Mont Carlo techniques has been written to calculate the effective solid angle of the detection system and simulate the response of the HPGe to mono-energetic protons from an extend source. It has been found that the fraction of the protons which leave through the cylindrical surface and deposit only part of their kinetic energy in the crystal increases with proton energy and the consequent increase in their range.