Preferred Language
Articles
/
ijs-375
The Improved Sand characterization of Mafe Field of Niger Delta by integrated well logs information and 3D seismic data
...Show More Authors

     Well log rock physics and seismic facies analysis was carried out with a view to enhancing reservoir sand characterization of Mafe Field of Niger Delta. Lithofacies were identified using suites of well logs and correlated across the block. Rock properties were estimated from wireline logs using empirical methods. Vp-porosity crossplot was used to characterize the delineated sandstone reservoirs by comparing observed clusters and trends with various rock physics models. Seismic attribute analysis was employed to detect lateral changes in lithology across the field. Reservoir A is a relatively clean sand, with low average volume of shale of 0.4, average thickness of 55m, good average porosity of 0.26 and average water saturation of 0.45. Reservoir B is also a relatively clean sand with low average volume of shale of 0.35, average thickness of 85m, high average porosity of 0.27 and average water saturation of  0.54. Reservoir C has an estimated volume of shale of 0.21 average total porosity of 0.23, and an average thickness of 70m with average water saturation of 0.65. Reservoir A conforms to the friable sand model while Vp-porosity crossplot cluster trend for both reservoir B and C show trend and properties imitating the contact cement model. The time slices extracted at different time intervals from the envelope and instantaneous frequency cubes show lateral variation in lithofacies across the delineated sandstones. Instantaneous frequency decreases from southwest to northeast which corresponds to decrease in shalines. Reservoir quality information can be predicted or even derived from the estimated petrophysical properties since these parameters such as porosity and volume of shale are sometimes closely associated with rock properties such as sorting, lithofacies and grain maturity.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 18 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Shear bond strength of stainless steel brackets bonded to porcelain surface treated with 1.23% acidulated phosphate fluoride gel compared to hydro fluoric acid with silane coupling agent (In vitro comparative study)
...Show More Authors

Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left u

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Effect Effect Effect Effect Effect Effect Effect of Thickness on Some Physical PropertiesThickness on Some Physical PropertiesThickness on Some Physical PropertiesThickness on Some Physical PropertiesThickness on Some Physical Properties Thickness on Some
...Show More Authors

The effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had

... Show More
View Publication Preview PDF