In recent years images have been used widely by online social networks providers or numerous organizations such as governments, police departments, colleges, universities, and private companies. It held in vast databases. Thus, efficient storage of such images is advantageous and its compression is an appealing application. Image compression generally represents the significant image information compactly with a smaller size of bytes while insignificant image information (redundancy) already been removed for this reason image compression has an important role in data transfer and storage especially due to the data explosion that is increasing significantly. It is a challenging task since there are highly complex unknown correlations between the pixels. As a result, it is hard to find and recover a well-compressed representation for images, and it also hard to design and test networks that are able to recover images successfully in a lossless or lossy way. Several neural networks and deep learning methods have been used to compress images. This article survey most common techniques and methods of image compression focusing on auto-encoder of deep learning.
The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreIn this paper, we use the definition of the action on the set of semi-group of the structure of this research .We introduce the concepts of -system which is a triple , , such that is a Hausdorff compact space called phase space, is a semi-group of transformations with a continuous action of on . We study and proof some theoretical properties related with that system. We also introduce the concept of Enfolding semi-group ( , ,and we prove that it is a compact right topological semi-group. In addition, we study the left and right ideals in the Enfolding semi-group. By using the dynamical system, we reflect various properties concerning with its structure for the Enfolding semi-group. Furthermore, we describe
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreA new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreIn this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
Hepatitis B is an inflammation of the liver that caused by Hepatitis B virus (HBV) which is DNA virus that infects the human and some kinds of animals such as chimpanzees and birds. This disease considered as the major disease of mankind and a serious global public health problem. HBsAg, HBeAg, HBcAb, HBeAb and HBsAb are markers used to detect the presence and the stage of infection. The current study included (181) individuals from both sexes, (137) males and (44) females. By ratio 3.11: 1.The mean age of patients 2.4033 ± 0.83519 (range 18-73) years as follows < 20 (11.6%), 21–40 (47.5%), 41–60 (29.8%) and > 60 (11.0%) . These patients are 73 (40.4%) Blood donors from Central Blood Bank, 88 (48.6%) Chronic kidney failure at Ibn –
... Show MoreMany people take protein supplements in an effort to gain muscle. However, there is some controversy as to whether this is really effective. There is evidence suggesting that consuming high level s of protein may in fact have negative side effects for health. The current study included 29 young Iraqi building muscles in two different groups (taken and not protein supplements) (age range=17-31 years), the cases were selected from family, friends, college students, and Gyms), from November 2014 to March 2015. A careful history was obtained from each volunteer including age, duration of sports, type of supplements, and family history of diseases. Some biochemical parameters like (glucose, urea, uric acid, creatinine, bilirubin, serum protei
... Show MoreIn this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show More