With the explosive growth of data, it has become very difficult for a person to process the data and find the right information from it. So, to discover the right information from the colossal amount of data that is available online, we need information filtering systems. Recommendation systems (RS) help users find the most interesting information among the options that are available. Ratings given by the users play a vital role in determining the purposes of recommendations. Earlier, researchers used a user’s rating history to predict unknown ratings, but recently a user’s review has gained a lot of attention as it contains a lot of relevant information about a user’s decision. The proposed system makes an attempt to deal with the problem of uncertainty in the rating histories by using textual reviews. Two datasets are used to experimentally analyze the proposed framework. In this approach, clustering techniques are used with natural language processing (NLP) for prediction. It also compares how different algorithms, such as K-mean, spectral, and hierarchical clustering algorithms, produce a varied outcome and concludes which method is appropriate for the given recommendation scenarios. We also validate how the proposed method outperforms the non-clustering-based methods.
In this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system a
... Show MoreWorld statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie
... Show MoreI found that it does not meet some of the requirements, including browsing and organizing structural elements, which is something in which the researcher found a scope for research, and from here she can formulate the problem of her research with the following question: Is there an actual need to develop user interface designs in the websites of Iraqi colleges of fine arts? The research included four chapters (the first chapter - the research problem - the second chapter (theoretical framework), which included three sections, the first is to identify the user interface, the second topic is the structural elements, and the third topic includes the rules of interface design and the dimensions of interaction), as well as the third chapter i
... Show MoreAbstract:
This study seeks to shed light on the important processes are linked to the impact of accounting information on the behavior of producer and user of information and are urging informational and informational use. That accounting as a system of accounting information and functions of the delivery of information to decision makers Under behavioral entrance to the formulation of accounting theory should be taken into account Othertlk accounting information in the behavior of the decision maker which requires an explanation of human behavior and predictable.
On the other hand that the accounting information that should be delivered to the decision maker will affect your beha
... Show MoreThe liver diseases can define as the tumor or disorder that can affect the liver and causes deformation in its shape. The early detection and diagnose of the tumor using CT medical images, helps the detector to specify the tumor perfectly. This search aims to detect and classify the liver tumor depending on the use of a computer (image processing and textural analysis) helps in getting an accurate diagnosis. The methods which are used in this search depend on creating a binary mask used to separate the liver from the origins of the other in the CT images. The threshold has been used as an early segmentation. A Process, the watershed process is used as a classification technique to isolate the tumor which is cancer and cyst.
 
... Show MoreSkin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show More