With the explosive growth of data, it has become very difficult for a person to process the data and find the right information from it. So, to discover the right information from the colossal amount of data that is available online, we need information filtering systems. Recommendation systems (RS) help users find the most interesting information among the options that are available. Ratings given by the users play a vital role in determining the purposes of recommendations. Earlier, researchers used a user’s rating history to predict unknown ratings, but recently a user’s review has gained a lot of attention as it contains a lot of relevant information about a user’s decision. The proposed system makes an attempt to deal with the problem of uncertainty in the rating histories by using textual reviews. Two datasets are used to experimentally analyze the proposed framework. In this approach, clustering techniques are used with natural language processing (NLP) for prediction. It also compares how different algorithms, such as K-mean, spectral, and hierarchical clustering algorithms, produce a varied outcome and concludes which method is appropriate for the given recommendation scenarios. We also validate how the proposed method outperforms the non-clustering-based methods.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThe A2?u-X1?g+ emission band system of 7LiH1 molecule has been calculated for Lambda doubling. The relation between wave number ?p , ?Q , ?R conducted the energies of the state of rotation F (J), and (J + 1) with rotational quantum number J, respectively, of 7LiH1 molecule for statehood A2?u using the rotation, fixed vibrational states of both the ground and raised crossovers vibrational against ???= 0 to V ' = 0-4using rotational levels J = 0 to J = 20 have found.
The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
he dairy industry is one of the industrial activities classified within the food industries in all phases of the dairy industry, which leads to an increase in the amount of wastewater discharged from this industry. The study was conducted in the Abu Ghraib dairy factory, classified as one of the central factories in Iraq, located in the west of Baghdad governorate, with a design capacity of 22,815 tons of dairy products. The characteristics of the liquid waste generated from the factory were determined for the following parameters biological oxygen demand (BOD5), Chemical oxygen demand (COD), total suspended solids (TSS), pH, nitrate, phosphate, chloride, and sulfate with an average value of (1079, 1945, 323, 9.2, 24, 2
... Show MoreThis paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Chaotic features of nuclear energy spectrum in 68Ge nucleus are investigated by nuclear shell model. The energies are calculated through doing shell model calculations employing the OXBASH computer code with effective interaction of F5PVH. The 68Ge nucleus is supposed to have an inert core of 56Ni with 12 nucleons (4 protons and 8 neutrons) move in the f5p-model space ( and ). The nuclear level density of considered classes of states is seen to have a Gaussian form, which is in accord with the prediction of other theoretical studies. The statistical fluctuations of the energy spectrum (the level spacing P(s) and the Dyson-Mehta (or statistics) are well described by the Gaussian orthogonal ens
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show More