COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The experimental outcomes of this study confirmed that the supported vector machine technique has high accuracy and excellent performance in the classification of the disease, as reflected by values of 91.8% accuracy, 91.7% sensitivity, 95.9% specificity, 91.8% F1-score, and 97.6% AUC.
The division partitioning technique has been used to analyze the four electron systems into six-pairs electronic wave functions for ( for the Beryllium atom in its excited state (1s2 2s 3s ) and like ions ( B+1 ,C+2 ) using Hartree-Fock wave functions . The aim of this work is to study atomic scattering form factor f(s) for and nuclear magnetic shielding constant. The results are obtained numerically by using the computer software (Mathcad).
Abstract
The present paper attempts to detect the level of (COVID-19) pandemic panic attacks among university students, according to gender and stage variables.
To achieve this objective, the present paper adopts the scale set up by (Fathallah et al., 2021), which has been applied electronically to a previous cross-cultural sample consisting of (2285) participants from Arab countries, including Iraq. The scale includes, in its final form, (69) optional items distributed on (6) dimensions: physical symptoms (13) items, psychological and emotional symptoms (12) items, cognitive and mental symptoms (11) items, social symptoms (8) items, general symptoms (13) items and daily living practices (12) items
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreThe objective of this study was to investigate the levels of depression, anxiety, and stress among dentists during covid-19 lockdown and to investigate the relationship between stress and each mental health state.
A cross-sectional survey on 269 dentists was conducted using DASS-21 and PHQ-9 questionnaires. Bivariate and multivariate models were constructed and the odds ratio (OR) was calculated to assess the strength of the association between an independent categorical variable and the outcome.
Being unsatisfied with the job was as
Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreThe current research aims to first - reveal the social repercussions of COVID-19 on women A - The impact of the epidemiological crisis on the social structure of the family B - Psychological and social pressures that women are exposed to during the Covid pandemic C - Social isolation resulting from the injury of a member Second - Understanding the health consequences of COVID-19 on women A- Mechanisms of differentiation in the treatment of Covid-19 treatment, home or hospital As for the limits of the research, the current research is determined by some private universities of students, female employees and teaching staff in Karkh district, which number eight (Al-Hikma, Al-Farahidi, Al-Farabi, Tigris, AlTurath, Al-Rashid, Al-Mashreq, Al-Nuso
... Show More