COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The experimental outcomes of this study confirmed that the supported vector machine technique has high accuracy and excellent performance in the classification of the disease, as reflected by values of 91.8% accuracy, 91.7% sensitivity, 95.9% specificity, 91.8% F1-score, and 97.6% AUC.
Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreBackground: Coronavirus disease 2019 (COVID-19) is
one of the updated challenges facing the whole world.
Objective: To identify the characteristics risk factors that
present in humans to be more liable to get an infection
than others.
Methods: A cross-sectional study was conducted for
positively confirmed 35 patients with polymerase chain
reaction in Wasit province at AL-Zahraa Teaching
Hospital from the period of March 13th till April 20th. All
of them full a questionnaire regarded by risk factors and
other comorbidities. Data were analyzed by SPSS version
23 using frequency tables and percentage. For numerical
data, the median, and interquartile range (IQR) were used.
Differences between categoric
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe study aims to measure the level of academic stress in the e-learning environment in three areas, students and their dealing with classmates, dealing with the professor and technical skills, and the nature and content of the curriculum among graduate students in the College of Education at King Khalid University during COVID-19 pandemic. This study was descriptive in nature (survey, comparative). The sample consisted of (512) male and female graduate students in the master's and doctoral programs. The Academic Stress Scale in the E-learning Environment designed by Amer (2021) was used. The results indicated a high level of academic stress among graduate students in the e-learning environment. The study also found that there were stati
... Show MoreSome new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreThe Coronavirus disease 2019 (COVID-19) pandemic is caused by the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first identified in December 2019 in Wuhan, China. The outbreak was declared as a Public Health Emergency of International Concern in January 2020 and a pandemic in March 2020. In this study, a complete statistical analysis for SARS-CoV-2 pandemic in entire Iraq, as well as for each governorate separately, is performed for the first time. The study covers a period that starts from the beginning of the pandemic, in the 24th of February 2020, until the 16th of July 2020. It was clear that, although the average number of the reported infection cases was low during Feb
... Show MoreIn this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show More