COVID-19 is an infectious pandemic disease which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Up to date, scientists are trying to identify a new specific antiviral drug to overcome this disease. Different methods are under study and evaluation in the entire world to control the virus, including blood plasma, blood purification, and antimicrobial and antiviral agents; however, there are no approved drugs yet. This review is focused on the conducted clinical trials worldwide, including the Iraq- Kurdistan region, China, USA, and Europe, to find relevant data on the agents with potential efficacy to treat the COVID-19 infection. The utmost commonly assessed therapies for this disease were chloroquine phosphate, hydroxyl-chloroquine, azithromycin, lopinavir/ritonavir, favipiravir, remdesivir, and alternatively, blood plasma, ivermectin in combination with doxycycline, and dexamethazone. This review suggests that blood plasma transfusion, the combination of hydroxyl-chloroquine with azithromycin, and remdesivir were the most abundant and efficient therapies. Thus, more light could be shed on these particular drugs on the road of drug investigation against COVID-19 pneumonia.
Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
The δ-mixing of γ-transitions in 70As populated in the 32 70 70 33 Ge p n As (, ) γ reaction is calculated in the present work by using the a2-ratio methods. In one work we applied this method for two cases, the first one is for pure transition and the sacend one is for non pure transition, We take into account the experimental a2-coefficient for previous works and δ -values for one transition only.The results obtained are, in general, in a good agreement within associated errors, with those reported previously , the discrepancies that occur are due to inaccuracies existing in the experimental data of the previous works.
A new compound 2-(4-methoxyphcnyl)-5-(4-aminophenyl)-1,3,4-
oxadiazole (VI) was prepared by intramol ecular condensation reaction followed by elimination of some simple moieties such as IhO and HCI by using POCI3 with acid hydrazide. A series of new ShiffsÂ
bases 2-(4-methoxyphenyl)-5-[4(4:alkoxybenzoyloxy) benzylidene amino phenyl] I,3,4-oxadia:t.ole (VII].was synthesized from treatment
of oxadiazole derivative [VI] with an appropriate aromatic aldehyde
(IU). Struct\lfe of the resulting products have been ascertaim:d by their melting pointS, elemental analysis ( some of them) and spectral data.
The research examines the mechanism of application of )ISO 21001: 2018( in the Energy Branch- Electromechanical Engineering at the University of Technology to achieve the quality of the educational service to prepare the branch to obtain the certificate of conformity with the requirements of) ISO 21001: 2018(, the necessary data were collected Depending on the (CHEKLIST) of (ISO 21001: 2018), field interviews and records of the concerned department, The researchers reached a number of results, the most prominent of which was the adoption of high quality leadership leaders and their willingness to implement the standard requirements, The university has a basic structure that qualifies it to implement the international standard, as
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
Novel derivatives of 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole and 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole carrying Schiff bases moiety were synthesised and fully characterised. The protection of D- fructose using benzoyl chloride was synthesized, followed by nucleophilic addition/elimination between benzotria- zole and chloroacetyl chloride to give 1-(1- chloroacetyl)- 1H-benzotriazole. The next step was condensation reaction of protected fructose and 1-(1-chloroacetyl)-1H- benzotriazole producing a new nucleoside analogue. The novel nucleoside analogues underwent a second conden- sation reaction with different aromatic and aliphatic amines to provide new Schiff b
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.