Computer Aided Designing Tools of Electron Lenses (CADTEL) is a software packages cares about design, compute and plot simultaneously of the objective and projector properties of electron magnetic lenses. The developments in CADTEL software leads to contain a large fields and methods, adding to previous publish in 2013. The current improvement is inserting of some important parameters which are the resolution and focusing parameters. These parameters are angular semi-angle (α), focusing power (β), resolution limit (δ), image rotation (θ), spherical aberration (Cs), defocus (ΔZ), wave aberration (Χwab), depth of field (Dfld), and depth of focus (Dfoc) at certain magnification conditions. Thus, user can easily compute and plot, according to relations and forms, the effect of these parameters at the lens properties of four magnification conditions; zero, infinite and finite (low and high) magnification modes. This work introduces a new development for CADTEL software which is an interactive visual interface in electromagnetic lenses.Whereas, it reflects a substantial reduction of time and resources desired for training new users and researchers in electron optics field. The results and curves representations appear with visual interfaces which are coded in visual basic programing language. In addition, the computations and figures which were plotted appeared that complete identification between these results which are obtained from CADTEL and that from other software’s and direct computations methods.
The present research aims to study the efficiency of infrared material lenses compared with the glass material lenses by determining LSF and CLSF for perfect optical system having circular aperture, Arnorphous(1,2) material transmitting infrared radiation (AMTIR) is used for infrared window, lenses and prisms when transmission in the range of 1-14 pm is desired in application like thermal imaging, astronomical and forward looking infrared (FLIR), AMTIR is the low thermal change in refractive index 72 * 10-6 /C ° is an advantage in lenses design to prevent defocussing.
The Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
In this paper, we studied the resolution of Weyl module for characteristic zero in the case of partition (8,7,3) by using mapping Cone which enables us to get the results without depended on the resolution of Weyl module for characteristic free for the same partition.
The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreA critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nano
... Show MoreWe report the influence of different glycine-to-nitrate ratios on the physical and magnetic properties for synthesized zinc-ferrite by microwave-assisted combustion route. Phase impurity and surface morphology investigated with XRD analysis and field emission- scanning electron microscopy, indicated that spinel structure were formed.Average particles size increased with the decrease of glycine to nitrate ratio. Magnetic measurement results indicated that high values of saturation magnetization were produced with low glycine/nitrate ratio. Optical properties of the investigated ferrites exhibited photo absorption from UV to visible region with
... Show More