Steganography is a technique to hide a secret message within a different multimedia carrier so that the secret message cannot be identified. The goals of steganography techniques include improvements in imperceptibility, information hiding, capacity, security, and robustness. In spite of numerous secure methodologies that have been introduced, there are ongoing attempts to develop these techniques to make them more secure and robust. This paper introduces a color image steganographic method based on a secret map, namely 3-D cat. The proposed method aims to embed data using a secure structure of chaotic steganography, ensuring better security. Rather than using the complete image for data hiding, the selection of the image band and pixel coordination is adopted, using the 3D map that produces irregular outputs for embedding a secret message randomly in the least significant bit (LSB) of the cover image. This increases the complexity encountered by the attackers. The performance of the proposed method was evaluated and the results reveal that the proposed method provides a high level of security through defeating various attacks, such as statistical attacks, with no detectable distortion in the stego-image. Comparison results ensure that the proposed method surpasses other existing steganographic methods regarding the Mean Square Error (MSE) and Peak Signal-to-Noise Ratio(PSNR).
The last two decades have seen a marked increase in the illegal activities on the Dark Web. Prompt evolvement and use of sophisticated protocols make it difficult for security agencies to identify and investigate these activities by conventional methods. Moreover, tracing criminals and terrorists poses a great challenge keeping in mind that cybercrimes are no less serious than real life crimes. At the same time, computer security societies and law enforcement pay a great deal of attention on detecting and monitoring illegal sites on the Dark Web. Retrieval of relevant information is not an easy task because of vastness and ever-changing nature of the Dark Web; as a result, web crawlers play a vital role in achieving this task. The
... Show MoreThe dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show MoreDerivative spectrophotometry is one of the analytical chemistry techniques used
in the analysis and determination of chemicals and pharmaceuticals. This method is
characterized by simplicity, sensitivity and speed. Derivative of Spectra conducted
in several ways, including optical, electronic and mathematical. This operation
usually be done within spectrophotometer. The paper is based on form of a new
program. The program construction is written in Visual Basic language within
Microsoft Excel. The program is able to transform the first, second, third and fourth
derivatives of data and the return of these derivatives to zero order (normal plot).
The program was applied on experimental (trial) and reals values of su
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
The huge evolving in the information technologies, especially in the few last decades, has produced an increase in the volume of data on the World Wide Web, which is still growing significantly. Retrieving the relevant information on the Internet or any data source with a query created by a few words has become a big challenge. To override this, query expansion (QE) has an important function in improving the information retrieval (IR), where the original query of user is recreated to a new query by appending new related terms with the same importance. One of the problems of query expansion is the choosing of suitable terms. This problem leads to another challenge of how to retrieve the important documents with high precision, high recall
... Show MorePortable devices such as smartphones, tablet PCs, and PDAs are a useful combination of hardware and software turned toward the mobile workers. While they present the ability to review documents, communicate via electronic mail, appointments management, meetings, etc. They usually lack a variety of essential security features. To address the security concerns of sensitive data, many individuals and organizations, knowing the associated threats mitigate them through improving authentication of users, encryption of content, protection from malware, firewalls, intrusion prevention, etc. However, no standards have been developed yet to determine whether such mobile data management systems adequately provide the fu
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreThis study produces an image of theoretical and experimental case of high loading stumbling condition for hip prosthesis. Model had been studied namely Charnley. This model was modeled with finite element method by using ANSYS software, the effect of changing the design parameters (head diameter, neck length, neck ratio, stem length) on Charnley design, for stumbling case as impact load where the load reach to (8.7* body weight) for impact duration of 0.005sec.An experimental rig had been constructed to test the hip model, this rig consist of a wood box with a smooth sliding shaft where a load of 1 pound is dropped from three heights.
The strain produced by this impact is measured by using rosette strain gauge connected to Wheatstone
t
The research deals with the statement of the importance of unanimous in Islamic Sharia in terms of being the third source of Islamic legislation after the Holy Qur’an and the Sunnah of the Prophet, and the extent of interest of the scholars of interpretation in it, and those who took great interest in mentioning what was agreed upon in every site that necessitated mentioning its issues within, or mentioning an event that has encountered an unanimous, and in various sciences, to extract and extrapolate Sharia rules when these rules are lost in the texts, because it is based on them and derived from them. Among these distinguished scholars is Muhammad bin Jarir al-Tabari. Besides, the research discusses in
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show More