The present study aims to convert obsidian rocks into spongy gravel for the use in the production of lightweight and heat insulating concrete. The rocks were burned at 960°C to achieve maximum swelling of the samples, then broken into gravel and sand sizes. For comparison purposes, two other types of aggregates were used, namely pumice and basalt. The main physical tests, such as specific gravity, bulk density, porosity, and water absorption were performed. For testing the resistance of samples to alkalinity, KOH and Na OH solutions were used. The results showed that the obsidian sample gave the best specifications, where its specific gravity was 0.33, while the values were 1.1 for pumice and 2.7 for basalt, with the same results being applied to the other physical tests. After forming the concrete cubes of the three types of aggregates with three mixing proportions (1, 1.5, and 3 of cement, sand, gravel, respectively), the most important physical, mechanical, and chemical tests were performed along with their specific ages. The results were distinct, specifically the specific gravity values of the aggregate concrete samples A and B (1.3 and 1.5, respectively, as compared to the basalt sample, which recorded a value of 2.5. As for the thermal conductivity, a distinct value was recorded for the obsidian sample (0.16 W/m.k) as compared to the pumice and basalt samples (2.1 and 1.32 W/m.k, respectively). Perhaps the reason behind this variation is the pores type of the aggregate produced for the obsidian sample, which were of the closed system. This prevents the seeping of water and cement materials into the body of gravel, keeping it at light weight and providing it with high thermal insulation. As for the alkalinity test, there was no evidence of a reaction with the alkali cement in the obsidian and pumice samples, except for a slight reaction that appeared in the basalt sample.
This study included the extraction properties of spatial and morphological basins studied using the Soil and Water Assessment Tool (SWAT) model linked to (GIS) to find the amount of sediment and rates of flow that flows into the Haditha reservoir . The aim of this study is determine the amount of sediment coming from the valleys and flowing into the Haditha Dam reservoir for 25 years ago for the period (1985-2010) and its impact on design lifetime of the Haditha Dam reservoir and to determine the best ways to reduce the sediment transport. The result indicated that total amount of sediment coming from all valleys about (2.56 * 106 ton). The maximum annual total sediment load was about (488.22 * 103 ton) in year 1988
... Show MoreSix proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show MoreThis paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul
... Show MorePorous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff. The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac
... Show MoreThis paper presents the application of nonlinear finite element models in the analysis of dappedends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length) and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped). The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experiment
... Show MoreUsing fiber-reinforced polymer (FRP) could effectively improve the strength and endurance of reinforced concrete (RC) constructions. This study evaluated the flexural behavior of one-way concrete slabs with openings reinforced with glass fiber-reinforced polymers (GFRP) bars. It strengthened using carbon fiber-reinforced polymer (CFRP) sheets around the openings. The experimental program of this study is adopted by casting and testing four one-way concrete slabs with dimensions of (150*750*2650) mm. These slabs are divided into two groups based on whether they were strengthened or un-strengthened. For each group, two different openings (either one rectangular or two square) measured 250*500 mm and 250*250 mm, respective
... Show MoreThe present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and
... Show MoreThe adopted accelerated curing methods in the experimental work are 55ºC and 82ºC according to British standard methods. The concrete mix with the characteristics compressive strength of 35MPa is design according to the ACI 211.1, the mix proportion is (1:2.65:3.82) for cement, fine and coarse aggregate, respectively. The concrete reinforced with different volume fraction (0.25, 0.5 and 0.75)% of glass, carbon and polypropylene fibers. The experimental results showed that the accelerated curing method using 82ºC gives a compressive strength higher than 55ºC method for all concrete mixes. In addition, the fiber reinforced concrete with 0.75% gives the maximum compressive strength, flexural and splitting tensile strength for all types of
... Show MoreFrequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their
... Show MoreThe present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load
... Show More