Preferred Language
Articles
/
ijs-3602
Manufacture of Spongy Gravel from Obsidian to Produce Lightweight and Thermal-Insulating Concrete
...Show More Authors

    The present study aims to convert obsidian rocks into spongy gravel for the use in the production of lightweight and heat insulating concrete. The rocks were burned at 960°C to achieve maximum swelling of the samples, then broken into gravel and sand sizes. For comparison purposes, two other types of aggregates were used, namely pumice and basalt. The main physical tests, such as specific gravity, bulk density, porosity, and water absorption were performed. For testing the resistance of samples to alkalinity, KOH and Na OH solutions were used. The results showed that the obsidian sample gave the best specifications, where its specific gravity was 0.33, while the values were 1.1 for pumice and 2.7 for basalt, with the same results being applied to the other physical tests. After forming the concrete cubes of the three types of aggregates with three mixing proportions (1, 1.5, and 3 of cement, sand, gravel, respectively), the most important physical, mechanical, and chemical tests were performed along with their specific ages. The results were distinct, specifically the specific gravity values of the aggregate concrete samples A and B (1.3 and 1.5, respectively, as compared to the basalt sample, which recorded a value of 2.5. As for the thermal conductivity, a distinct value was recorded for the obsidian sample (0.16 W/m.k) as compared to the pumice and basalt samples (2.1 and 1.32 W/m.k, respectively). Perhaps the reason behind this variation is the pores type of the aggregate produced for the obsidian sample, which were of the closed system. This prevents the seeping of water and cement materials into the body of gravel, keeping it at light weight and providing it with high thermal insulation. As for the alkalinity test, there was no evidence of a reaction with the alkali cement in the obsidian and pumice samples, except for a slight reaction that appeared in the basalt sample.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Behavioral Investigation of Reinforced Concrete T-Beams with Distributed Reinforcement in the Tension Flange
...Show More Authors

Current design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed May 31 2017
Journal Name
Journal Of Engineering
Evaluating the Performance of High Modulus Asphalt Concrete Mixture for Base Course in Iraq
...Show More Authors

In the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These pro

... Show More
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Some Mechanical Properties of Concrete by using Manufactured Blended Cement with Grinded Local Rocks
...Show More Authors

The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress

... Show More
Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Design of Earthquake-Resistant Buildings by Using Reinforced Concrete or Steel Flexible Corner Joints
...Show More Authors

This study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed May 31 2017
Journal Name
Journal Of Engineering
Evaluating the Performance of High Modulus Asphalt Concrete Mixture for Base Course in Iraq
...Show More Authors

In the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved . mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These prope

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 19 2017
Journal Name
Journal Of Engineering
Fire Flame Influence on the Behavior of reinforced Concrete Beams Affected by Repeated Load
...Show More Authors

The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa).

To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the seco

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 01 2016
Journal Name
Journal Of Engineering
Some Mechanical Properties of Concrete by using Manufactured Blended Cement with Grinded Local Rocks
...Show More Authors

The  use  of  blended  cement  in  concrete  provides economic, energy savings,  and ecological  benefits, and also  provides. Improvement in the properties of materials incorporating blended cements. The  major  aim  of  this  investigation  is  to  develop  blended  cement  technology using  grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.

The main conclusion of this study was that all ty

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 23 2019
Journal Name
Civil Engineering Journal
Energy Absorption Evaluation of CFRP-Strengthened Two-Spans Reinforced Concrete Beams under Pure Torsion
...Show More Authors

For more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC

... Show More
View Publication
Scopus (20)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Proceedings Of International Structural Engineering And Construction
ON THE REDUCTION OF PRESTRESSING FORCE NEAR SUPPORTS IN PARTIALLY PRESTRESSED CONCRETE FLEXURAL MEMBERS
...Show More Authors

Straight tendons in pretensioned members can cause high-tensile stresses in the concrete extreme fibers at end sections because of the absence of the bending stresses due to self-weight and superimposed loads and the dominance of the moment due to prestressing force alone. Accordingly, the concrete tensile stresses at the ends of a member prestressed with straight tendons may limit the service load capacity of the member. It is therefore important to establish limiting zone in the concrete section within which the prestressing force can be applied without causing tension in the extreme concrete fibers. Two practical methods are available to reduce the stresses at the end sections due to the prestressing force. The first method based

... Show More
View Publication
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Non-Destructive Testing of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS)  has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity  electrical resistivity and lesser absorption than fiber reinforced

... Show More
View Publication Preview PDF