The present work investigated the effect of distance from target surface on the parameters of lead plasma excited by 1064nm Q-switched Nd:YAG laser. The excitation was conducted in air, at atmospheric pressure, with pulse length of 5 ns, and at different pulse laser energies. Electron temperature was calculated by Boltzmann plot method based on the PbI emission spectral lines (369.03 nm, 416.98 nm, 523.48, and 561.94 nm). The PbI lines were recorded at different distances from the target surface at laser pulse energies of 260 and 280 mJ. The emission intensity of plasma increased with increasing the lens-to-target distance. The results also detected an increase in electron temperature with increasing the distance between the focal lens and the surface of the target in all laser energies under study. In addition, the electron number density was determined by using the Stark broadening method. The data illustrated that the electron number density was increased with increasing the distance from target surface, reaching the maximum at a distance of 11 cm for all pulse laser energy levels under study.
Aluminum plasma was generated by the irradiation of the target
with Nd: YAG laser operated at a wavelength of 1064 nm. The
effect of laser power density and the working pressure on spectral
lines generating by laser ablation, were detected by using optical
spectroscopy. The electron density was measured using the Stark
broadening of aluminum lines and the electron temperature by
Boltzmann plot method it is one of the methods that are used. The
electron temperature Te, electron density ne, plasma frequency
and Debye length increased with increasing the laser peak
power. The electron temperature decrease with increasing gas
pressure.
In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreIn this research, a type of gram negative bacteria was exposed to non-thermal plasma at a distance of (2 and 3 cm) from the plasma flow nozzle, with the use of an alternating power supply (5KHz), where exposure was made at two different voltages (4.9 and 8 kV). A negative gram of Pseudomonas aeruginosa bacteria was isolated and exposed to non-thermal plasma at different flow rates of argon gas whose value ranged from (1-5) liters/minute. The results showed that bacterial killing rate is directly proportional to distance while exposing the samples to non-thermal plasma, and the best factors by which a complete killing rate was obtained were at a distance of 2 cm with a voltage of 8 kV and a gas flow rate of 5 liters/min,
... Show MoreIn this work, the effect of laser energy on the properties of a calcium plasma generated by a Q-switched Nd: YAG laser at the fundamental wavelength was studied using spectroscopy. The Boltzmann plot and Stark broadening method were used to measure the main plasma parameters (electron temperature and electron density). The electron temperature ranged ( 0.169 -0.172 ) eV, the electron density ranged ( 2.10 – 2.63 ) for laser energy range of ( 400 – 700) mJ. Other basic plasma properties were also measured, including the Debye length, the number of particles in the Debye sphere, and the plasma frequency. Laser energy affects all plasma parameters, according to our results.
In this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
In this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s
... Show MoreThe current study was achieved on the effects of laser energy and annealing temperature on x-ray structural and optical properties, such as the UV-Visible spectra of cadmium sulfide (CdS). The films were prepared using pules laser deposition technique (PLD) under vacuum at a pressure of 2.5×10-2 mbar with different laser energies (500-800 mJ) and annealing at a temperature of 473K. X-ray diffraction patterns and intensity curves for the CdS showed that the formation of CdS multi-crystallization films at all laser energies. The optical properties of the films were studied and the variables affecting them were investigated in relation to laser energy and changes in temperature.
An experiment was carried out by using pots in kalar horticulture station/ Sulaimani province on soil which is talken form on once region field in the seasoning growth(20062007). The objective was to study interaction of different levels from urea fertilizer (zero, 0.20, 0.40, 0.80 gm / 4 kg soil in pot). These levels were equal to (zero, 25, 50, 100, kg uera / D) and super phosphate levels (zero, 0.24, 0.48, gm / 4 kg soil in pot).These levels were equal to(zero, 30, 60, kg / D) in morphological and physiological characteristies (ex. dry weight, leaf area, absolute growth rate, protein percentage, and chlorophyll content) of Ipa (95) wheat variety. This experiment was carried out by completely Randomized Design (C. R. D.). Re
In this Research, (In2O3: CdO) films were prepared using pulsed laser deposition (PLD) method on glass substrate at room temperature deposited at laser influence 500mJ/cm2with different shoots N= (200,300,400,500and600). the structural, and the optical properties and the films are studied with different annealing temperatures (523and 623) K. Optical measurements and the films were analyzed by UV-VIS absorption spectra. The structural properties of samples were investigated by x-ray diffraction patterns of the films and show that the films and polycrystalline Structure with all shoots. Transmittance spectrum found is equal to 93.17%, refractive index range is 1.635 and energy gap range is 2.75-3.15ev.
Analytical field target function has been considered to represent the axial magnetic field distribution of double polepiece symmetric magnetic lens. In this article, with aid of the proposed target function, the syntheses procedure is dependent. The effect of the main two coffectin optimization parameters on the lens field distribution, polepieces shape, and the objective focal prosperities for lenses operated under zero magnification mode has been studied. The results have shown that the objective properties evaluated in sense of the inverse design procedure are in an excellent correspondence with that of analysis approach. Where the optical properties enhance as the field distribution of the electron lens distributed along a narrow axi
... Show More