In this work, plasma parameters such as electron density (ne), electron temperature (Te), Debye length (λD), plasma frequency (fPlasma), and Debye number (ND) for Cu plasma produced by Pin-Plate DC discharge were studied. Spectroscopic technique was used to analyze and determine spectral emission lines. The value of the electron density for Cu was in the range (1.5–3.5)×1018cm-3 and for the electron temperature was in the range ( 1.31 – 1.61)eV. Finally, plasma parameters of Cu were caculated through plasma produced by Pin-Plate DC discharge using different voltages (600-900) V.
The motion of fast deuterons in most dense plasma focus devices ( DPF ) , may be characterized that it has a complex nature in its paths and this phenomena by describing a through gyrating motion with arbitrary changes in magnitude and direction . In this research , we focused on the understanding the theoretical concepts which depend deeply on the experimental results to explain the deuteron motions in the pinch region , and then to use the fundamental physical formulas that are deeply related to the explanation of this motion to prepare a suitable model for calculating the vertical and radial components for deuteron velocity by improving the Rung – Kutta Method
This project aims to fabricate nanostructures (AgNPS) using the electrical exploding wire (EEW) technique using Rhodamine 6G dye as the probe molecule, investigate the effect of AgNPS on the absorption spectra and surface-enhanced Raman scattering (SERS) activities, and advance using porous silicon as an active substrate for surface-enhanced Raman scattering (SERS). X-Ray diffraction (XRD) was used to investigate the structural properties of the nanostructures (AgNPs). Field emission scanning electron microscopy (FE-SEM) was used to investigate surface morphology. A double beam UV-Vis Spectrophotometer was used to analyze the mixed R6G laser dye(of concentration 1x M) absorption spectra with the nanostructures AgNPS (of concentra
... Show MoreAn experimental investigation of the variation of argon discharge current with a glow and afterglow time intervals of a square discharge voltage was carried out at low pressure (6-11 mbar). The discharge was created between two circular metal electrodes of diameter (7.5 cm), separated horizontally by a distance (10 cm) at the two ends of a Pyrex cylindrical tube. A composite of two Gaussian functions has been suggested to fit and explain the variation graphs clearly. It is shown that the necessary times of glow and afterglow needed to attain a maximum discharge current are (70 us) and (60 us), respectively. The discharge current is observed to drop to the lowest value when the two times are serially longer than (85 us) and (72 u
... Show MoreThe study area is encompassed by the 33.59-34.93°N latitudes and 45.44-46.39°E longitudes and divided into four groups with respect to earthquake event locations. We determined fault plane solutions, moment magnitudes, focal depths, and trend of slip with the direction of the moment stress axes (P, N, and T) for 102 earthquakes. These earthquakes had a local magnitude in the range between 4.0 and 6.4 for the time period from January 2018 to the end of August 2019, with focal depths ranged between 6 and 17 km. Waveform moment tensor inversion technique was used to analyze the database constructed from seismic stations on local and neighboring country networks (Iraq, Iran, and Turkey). We separated the studie
... Show MoreThe significant shortage of usable water resources necessitated the creation of safe and non-polluting ways to sterilize water and rehabilitate it for use. The aim of the present study was to examine the ability of using a gliding arc discharge to inactivate bacteria in water. Three types of Bacteria satisfactory were used to pollute water which are Escherichia coli (Gram-negative), Staphylococcus aurous (Gram-positive) and salmonella (Gram-negative). A DC power supply 12V at 100 Hz frequency was employed to produce plasma. pH of water is measured gradually during the plasma treatment process. Contaminated water treated by gliding arc discharge at steadying the gas flow rate (1.5 l/mi
Prodigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co
... Show MoreIn this study 77 human isolates of Staphylococcus aureus were obtain from different clinical sources. The results showed that the number of isolates producing α-hemolysin was 32 isolates (41.55%) , while non- hemolysin producing was 45 isolates (58.45%) .The minimum inhibitory concentration (MIC) of methicillin which were 32 micrograms \ ml. The effect of CD-Cholesterol ,Cholesterol ,Cyclodextran(CD) ,Methicillin and Phosphate Buffer Saline(PBS) on α- hemolysin activity was study and the hemolytic Titer was:8 ، 32.768 ,65.536 ,
140.737.488.355.32 , 4.961408E + 25 respectively, while the effect of the same effect with Titer 67.108.864 and low Titer with PBS 3.96140812E + 25. The α – hemolysin toxin was partialy purified by ammoni
The crystal compounds Tl2-xAg2-ySryBayCa2Cu3O10+& are successfully prepared in different concentrations (x, y=0.1, 0.2, 0.3, 0.4, 0.5) by solid state reaction process. The samples were then subjected to Nano technique under hydrolic pressure 8 ton/cm2. samples have been annealed in (850 C0) for 72 hours. The results show a best value at x, y=0.3 ratio of Ag, Ba. Electrical resistivity at x, y= 0.3 of Ag, Ba are obtained when the best value of Tc= 141 K. Samples morphology were also observed by AFM (in three dimensions), the best value of Nano is 91.74 nm at x, y= 0.3. Morphological structures of the surface were also observed by (SEM) and (EDX) show that there are dark regions and light which indicate the presence of heavy elements a
... Show More