Preferred Language
Articles
/
ijs-3545
Impacts of Porous Medium on Unsteady Helical Flows of Generalized Oldroyd-B Fluid with Two Infinite Coaxial Circular Cylinders
...Show More Authors

This article deals with the influence of porous media on helical flows of generalizedOldroyd-B between two infinite coaxial circular cylinders.The fractional derivative is modeled for this problem and studied by using finite Hankel and Laplace transforms.The velocity fields are found by using the fundamentals of the series form in terms of Mittag-Lefflerequation.The research focused on permeability parameters , fractional parameters(

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Mhd on Accelerated Flows of A Viscoelastic Fluid with The Fractional Burgers’ Model
...Show More Authors

In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the se

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
3D MHD Radiation Flow of Unsteady Casson Fluid with Viscous Dissipation Effect
...Show More Authors

A numerical evaluation of the crucial physical properties of a 3D unsteady MHD flow along a stretching sheet for a Casson fluid in the presence of radiation and viscous dissipation has been carried out. Meanwhile, by applying similarity transformations, the nonlinear partial differential equations (PDEs) are transformed into a system of ordinary differential equations (ODEs). Furthermore, in the numerical solution of nonlinear ODEs, the shooting method along with Adams Moulton method of order four has been used. The obtained numerical results are computed with the help of FORTRAN. The tables and graphs describe the numerical results for different physical parameters which affect the velocity and temperature profiles.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Electrical Conductivity on Fluid Flow between Two Parallel Plates in a Porous Medioum
...Show More Authors

This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system b

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 10 2019
Journal Name
Al-mustansiriyah Journal Of Science
Effect of Inclined Magnetic Field on Peristaltic Flow of Carreau Fluid through Porous Medium in an Inclined Tapered Asymmetric Channel
...Show More Authors

During this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Steady and unsteady flow of non-newtonian fluid in curved pipe with triangular
...Show More Authors

This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid

View Publication Preview PDF
Publication Date
Mon Apr 01 2013
Journal Name
Journal Of Mathematical Analysis And Applications
Strong duality for generalized monotropic programming in infinite dimensions
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Int. J. Eng. Ra
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition
...Show More Authors

This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for

... Show More
View Publication
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Natural Convection into a Horizontal Annular Tube with Porous Medium Effects
...Show More Authors

In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed.

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
International Journal Of Computer Applications
Mixed Convection in a Square Cavity Filled with Porous Medium with Heated Bottom Wall
...Show More Authors

Two-dimensional unsteady mixed convection in a porous cavity with heated bottom wall is numerically studied in the present paper. The forced flow conditions are imposed by providing a hydrostatic pressure head at the inlet port that is located at the bottom of one of the vertical side walls and an open vent at the top of the other vertical side wall. The Darcy model is adopted to model the fluid flow in the porous medium and the combination effects of hydrostatic pressure head and the heat flux quantity parameters are carefully investigated. These governing parameters are varied over wide ranges and their effect on the heat transfer characteristics is studied in detail. It is found that the time required to reach a desired temperature at th

... Show More
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
The Influence of Magnetohydrodynamic Flow and Slip Condition on Generalized Burgers’ Fluid with Fractional Derivative
...Show More Authors

This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref