COVID-19 affected the entire world due to the unavailability of the vaccine. The social distancing was a contributing factor that gave rise to the usage of Online Social Networks. It has been seen that people share the information that comes to them without verifying its source . One of the common forms of information that is disseminated that have a radical purpose is propaganda. Propaganda is organized and conscious method of molding conclusions and impacting an individual's contemplations to accomplish the ideal aim of proselytizer. For this paper, different propagandistic tweets were shared in the COVID-19 Era. Data regarding COVID-19 propaganda was extracted from Twitter. Labelling of data was performed manually using different propaganda identification techniques and Hybrid feature engineering was used to select the essential features. Ensemble machine learning classifiers were used for performing the binary classification. Adaboost shows an accuracy of 98.7%, which learns from a weak learning algorithm by updating the weights.
Routine vaccination activities, such as detection, reporting, and management of adverse events following immunization (AEFIs), are generally handled by healthcare providers (HCPs). Safe vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV-2) were introduced to control the Coronavirus Disease-19 (COVID-19) pandemic. The study aimed to assess the knowledge, perceptions, and practice of HCPs in Iraq about reporting adverse events following COVID-19 vaccination, and their association with sociodemographic variables. The study was a cross-sectional study that was carried out between August and September 2021 at the COVID-19 vaccination centers in Iraq. This study used an online and paper-based questionnaire, which
... Show More
Abstract
The net profit reported in the annual financial statements of the companies listed in the financial markets, is considered one of the Sources of information relied upon by users of accounting information in making their investment decisions. At the same time be relied upon in calculating the bonus (Incentives) granted to management, therefore the management of companies to manipulate those numbers in order to increase those bonuses associated to earnings, This practices are called earnings management practices. the manipulation in the figures of earnings by management will mislead the users of financial statements who depend on reported earnings in their deci
... Show MoreAbstract
This research aims to assess the practice of physical activities by people with intellectual disabilities and its challenges during the Coronavirus (COVID-19) pandemic from their families' point of view. The research sample consisted of (87) individuals from families with intellectual disabilities in the Makkah region. The sample was selected by the simple random method where the researcher used the descriptive analytical approach. A questionnaire of (32) items was used as the research tool to collect data. The findings of the study showed that the assessment level of practicing physical activities by people with intellectual disabilities was low. The public facilities dimension ranked first with a moder
... Show MoreFeedback on students’ assignments can be done in many different ways. Nowadays, the growing number of students at universities has increased the burden on the instructors to give feedback on students’ writings quickly and efficiently. As such, new methods of modern online automated feedback tools, such as Hemingway app and ecree,are used to assist and help instructors. Hence, this research is an explanatory study to examine the effect of using the online automated feedback on some Iraqi EFL learners’ writings at the university level. The study comprised 60 students enrolled in an English language course at the University of Anbar. They were divided randomly into two groups, experi
... Show MoreIt is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases : first, in real data; and secondly, after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.
Is the subject of Facebook of more topics that aroused interest and that it provides the features and services that allows users to direct communication and interaction and dialogue with others, and deals with the subject of research the use of Facebook and its effects left by the social relations, as the field study was conducted on a sample of 130 students from students Baghdad University of males and females in the Faculty of Political Science and Agriculture, Science and Education, Girls, and limited the sample to Facebook users exclusively to test the study hypotheses and relationships connectivity, and the results revealed the presence of a significant impact of Facebook in th
... Show MoreIn this paper, we characterize the percolation condition for a continuum secondary cognitive radio network under the SINR model. We show that the well-established condition for continuum percolation does not hold true in the SINR regime. Thus, we find the condition under which a cognitive radio network percolates. We argue that due to the SINR requirements of the secondaries along with the interference tolerance of the primaries, not all the deployed secondary nodes necessarily contribute towards the percolation process- even though they might participate in the communication process. We model the invisibility of such nodes using the concept of Poisson thinning, both in the presence and absence of primaries. Invisibility occurs due to nodes
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show More