In this article, the additivity of higher multiplicative mappings, i.e., Jordan mappings, on generalized matrix algebras are studied. Also, the definition of Jordan higher triple product homomorphism is introduced and its additivity on generalized matrix algebras is studied.
To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
This paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreIn this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
In this paper, the concept of soft closed groups is presented using the soft ideal pre-generalized open and soft pre-open, which are -ᶅ- - -closed sets " -closed", Which illustrating several characteristics of these groups. We also use some games and - Separation Axiom, such as (Ʈ0, Ӽ, ᶅ) that use many tables and charts to illustrate this. Also, we put some proposals to study the relationship between these games and give some examples.
An integrated lithofacies and mineralogical assemblage was used to describe a depositional model and sequence stratigraphic framework of the Maastrichtian–Danian succession in the Western Desert of Iraq and eastern Jordan. Fifteen lithofacies types were grouped into three associations recognized in a distally steepened ramp characterized by an apparent, distinct increase in a gradient paleobathymetric deepening westward. The clay and nonclay minerals are dominated by smectite and palygorskite, with trace amounts of kaolinite, sepiolite, illite and chlorite. Meanwhile, quartz, calcite, dolomite, opal CT (Cristobalite - Tridymite), and apatite are the main nonclay minerals. The widely dominated smectite in the Western Phosphatic Basin of Ir
... Show MoreThe main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreThe authors introduced and addressed several new subclasses of the family of meromorphically multivalent -star-like functions in the punctured unit disk in this study, which makes use of several higher order -derivatives. Many fascinating properties and characteristics are extracted systematically for each of these newly identified function classes. Distortion theorems and radius problems are among these characteristics and functions. A number of coefficient inequalities for functions belonging to the subclasses are studied, and discussed, as well as a suitable condition for them is set. The numerous results are presented in this study and the previous works on this
... Show More