Preferred Language
Articles
/
ijs-3419
A Survey on Feature Selection Techniques using Evolutionary Algorithms
...Show More Authors

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the preferred feature matters in complex and massive data. Here, furthermore, I discuss algorithms like the genetic algorithm (GA), the Non-Dominated Sorting Genetic Algorithm (NSGA-II), Particle Swarm Optimization (PSO), and some other meta-heuristic strategies for considering the provisional separation of issues. A comparison of these algorithms has been performed; the results show that the feature selection technique benefits machine learning algorithms by improving the performance of the algorithm. This paper also presents various real-world applications of using feature selection.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 02 2015
Journal Name
American Journal Of Applied Sciences
Advances in Document Clustering with Evolutionary-Based Algorithms
...Show More Authors

Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research wor

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improving Detection Rate of the Network Intrusion Detection System Based on Wrapper Feature Selection Approach
...Show More Authors

Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
A General Overview on the Categories of Image Features Extraction Techniques: A Survey
...Show More Authors

In the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Survey of Scale-invariant Feature Transform Algorithm
...Show More Authors

The effectiveness of detecting and matching of image features using multiple views of a specified scene using dynamic scene analysis is considered to be a critical first step for many applications in computer vision image processing. The Scale invariant feature transform (SIFT) can be applied very successfully of typical images captured by a digital camera.
In this paper, firstly the SIFT and its variants are systematically analyzed. Then, the performances are evaluated in many situations: change in rotation, change in blurs, change in scale and change in illumination. The outcome results show that each algorithm has its advantages when compared with other algorithms

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Traitement Du Signal
Optimizing Acoustic Feature Selection for Estimating Speaker Traits: A Novel Threshold-Based Approach
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
An Integrated Information Gain with A Black Hole Algorithm for Feature Selection: A Case Study of E-mail Spam Filtering
...Show More Authors

     The current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed May 31 2023
Journal Name
Iraqi Geological Journal
A Survey of Infill Well Location Optimization Techniques
...Show More Authors

The maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 19 2024
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (34)
Crossref (36)
Scopus Clarivate Crossref