In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results show that SGD-SPCA is more efficient than other existing methods.
Quantitative real-time Polymerase Chain Reaction (RT-qPCR) has become a valuable molecular technique in biomedical research. The selection of suitable endogenous reference genes is necessary for normalization of target gene expression in RT-qPCR experiments. The aim of this study was to determine the suitability of each 18S rRNA and ACTB as internal control genes for normalization of RT-qPCR data in some human cell lines transfected with small interfering RNA (siRNA). Four cancer cell lines including MCF-7, T47D, MDA-MB-231 and Hela cells along with HEK293 representing an embryonic cell line were depleted of E2F6 using siRNA specific for E2F6 compared to negative control cells, which were transfected with siRNA not specific for any gene. Us
... Show MoreDetection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accu
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreA study of characteristics of the lubricant oils and the physical properties is essential to know the quality of lubricant oils. The parameters that lead to classify oils have been studied in this research. Three types of multi-grades lubricant oils were applied under changing temperatures from 25 oC to 78oC to estimate the physical properties and mixture compositions. Kinematic viscosity, viscosity gravity constant and paraffin (P), naphthenes (N) and aromatics (A) (PNA) analysis are used to predict the composition of lubricants oil. Kinematic viscosity gives good behaviors and the oxidation stability for each lubricant oils. PNA analysis predicted fractions of paraffin (XP), naphthenes (XN),
... Show MoreIn this study, different oil fields in Mesopotamian basin, southern Iraq (Siba, Zubair, Nahr - Umr, Majnoon, Halfaya, Kumait, and Amara) were selected for studying burial history. PetroMod software 1D was used for basin constructing and to evaluate burial history of the basin. Results showed that in the upper Jurassic to the Recent, Mesopotamian Basin exhibited a complex subsidence history over a period of about 152 Ma.There are different periods of subsidence: high, moderate, and slow. High subsidence occurred at upper Jurassic- mid Cretaceous and at Miocene due to Tectonic subsidence. Slow subsidence occurred at upper Cretaceous and moderate subsidence at Paleogene. In the upper Jurassic, rapid subsidence is driven under the effect of
... Show MoreThe road networks is considered to be one of the determinants that controls to specify the areas of human activities, which it depend on to specify the arrival cost , in addition it is useful to achieve the connectivity for interaction and human activities , and shorten the distance and time between the population and places of service. The density of the road network in any space directly affected by the density of population and the type of economic activities and administrative functions performed by the space. On this basis, the subject of this study is reflected in the quantitative analysis of the roads network in the Governorate of Karbala. The study consists the quantitative analysis for the roads network and the Urban Nodes in th
... Show MorePassive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay
... Show MoreIn this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreIn this paper an attempt to provide a single degree of freedom lumped model for fluid structure interaction (FSI) dynamical analysis will be presented. The model can be used to clarify some important concept in the FSI dynamics such as the added mass, added stiffness, added damping, wave coupling ,influence mass coefficient and critical fluid depth . The numerical results of the model show that the natural frequency decrease with the increasing of many parameters related to the structure and the fluid .It is found that the interaction phenomena can become weak or strong depending on the depth of the containing fluid .The damped and un damped free response are plotted in time domain and phase plane for different model parameters It is fou
... Show More