Preferred Language
Articles
/
ijs-3389
Enhanced Supervised Principal Component Analysis for Cancer Classification
...Show More Authors

In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results show that SGD-SPCA is more efficient than other existing methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Component of Pattern Materials and Its Influence on Physical Properties
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Mar 15 2024
Journal Name
Journal Of Baghdad College Of Dentistry
A clinicopathological analysis of 151 odontogenic tumors based on new WHO classification 2022: A retrospective cross-sectional study
...Show More Authors

Background: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati

... Show More
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Antioxidant, cytotoxicity and phytochemical analysis of Larinus maculates F. cocoon aqueous extract against lung cancer
...Show More Authors
Abstract<p>Cocoon of larva <italic>Larinus maculates</italic> F. from Curculionidae family (<italic>Echinops</italic> species), locally in Iraq known as Tihan, is one of traditional folk medicine used in the treatment of diversity respiratory system and fever. This study was carried out to assess the bioactive component and the antioxidant capability of aqueous beetle cocoon extract (<italic>Larinus maculates</italic> F.) along with its possible cytotoxic activity against A549 lung cancer cell line. For phytochemical analysis gas chromatography-mass spectrometry (GC-MS) was used, and to detected free scavenging activity 2, 2-diphenyl-1 picrylhydrazyl (DPPH) was used</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics &amp; Computer Science
The Use of Gradient Based Features for Woven Fabric Images Classification
...Show More Authors

View Publication
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal Of Intelligent Engineering And Systems
A Ranked-Aware GA with HoG Features for Infant Cry Classification
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 Ieee Conference On Computational Intelligence In Bioinformatics And Computational Biology (cibcb)
Granular computing approach for the design of medical data classification systems
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Classification of k-Sets in PG(1,25), for k=4,…,13
...Show More Authors

A -set in the projective line is a set of  projectively distinct points. From the fundamental theorem over the projective line, all -sets are projectively equivalent. In this research, the inequivalent -sets in have been computed and each -set classified to its -sets where  Also, the  has been splitting into two distinct -sets, equivalent and inequivalent.

View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Genetic Algorithm as a Feature Selection for Image Classification
...Show More Authors

     Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval (  are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF