In-situ measurements of ultraviolet (UV) and solar irradiance is very sparse in Nigeria because of cost; it is estimated using meteorological parameters. In this work, a low-cost UV and pyranometer device, using locally sourced materials, was developed. The instrument consists of a UV sensor (ML8511), a photodiode (BPW34) housed in a carefully sealed vacuumed glass bulb, the UV and solar irradiance sensor amplifiers, a 16-bit analog-to-digital converter (ADS1115), Arduino mega 2560, liquid crystal display (LCD) and microSD card for data logging. The designed amplifier has an offset voltage of 0.8676 mV. The sensitivity of the irradiance device is 86.819 Wm-2/mV with a correcting factor of 27.77 Wm-2 and a maximum range of 1200 Wm-2. The instrument validation error is 9.67% and a correlation coefficient of 0.89 when compared with a standard SRS100 pyranometer. The UV sensor showed a close response with a correlation of 0.99 in comparison with a standard Skye instrument. From 08:00 to 16:00 local time (LT), there is a very close agreement between the standard device and the developed counterpart, with marginal differences of about 9.6% observed at the two extremes.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More