Theoretical investigation of proton halo-nucleus (8B and 17Ne) has revealed that the valence protons are to be in pure (1p1/2)1 orbit for 8B and (1d3/2)2 orbit for 17Ne. The nuclear matter density distributions, the elastic electron scattering form factors and (proton, charge, neutron and matter) root-mean square (rms) are studied for our tested nuclei, through an effective two-body density operator for point nucleon system folded with two-body full correlation operator's functions. The full correlation (FC's ) takes account of the effect for the strong short range repulsion (SRC's) and the strong tensor force (TC's) in the nucleon-nucleon forces. The effective two-body density operator is produced and used to derive an explicit form for ground state two-body nucleon density distributions (2BNDD's) applicable for proton – rich halo nuclei and Fortran 95 programs are utilized to obtain theoretical values of our calculation. The effect of the TC's and SRC's on the ground state also calculated. 2BNDD's obtained within the two- frequency shell model (TFSM) approach, the elastic charge scattering form factors F(q)'s of proton halo nuclei are studied through Plane Wave Born Approximation (PWBA) .
2-benzamide benzothiazole complexes of Pd(II) , Pt(IV) and Au(III) ions were prepared by microwave assisted radiation. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, flame atomic absorption, elemental analysis CHNS , magnetic susceptibility measurements , melting points and conductivity measurements. The nature of complexes in liquid state was studied by following the molar ratio method which gave results approximately identical to those obtained from isolated solid state; also, stability constant of the prepared complexes were studied and found that they were stable in molar ratio 1:1.The complexes have a sequar planner geometry except Pt(IV) complex has octahedral .
... Show MoreThis paper represents an experimentalattempt to predict the influence of CO2-MAG welding variables on the shape factors of the weld joint geometry. Theinput variables were welding arc voltage, wire feeding speed and gas flow rate to investigate their effects on the shape factorsof the weld joint geometry in terms of weld joint dimensions (bead width, reinforcement height, and penetration). Design of experiment with response surface methodology technique was employed to buildmathematical models for shape factors in terms of the input welding variables. Thepredicted models were found quadratic type and statistically checked by ANOVA analysis for adequacy purpose. Also, numerical and graphical optimizations were carried out
... Show MorePricing has an important position among the elements of marketing mixture (4ps) as it represents revenues that in turn represent one of the important pillars' for resources affecting on organizations sustainability and development , and the failure in determining prices and their strategies has a dangerous effect on the organizations reality and future as a whole . from this point, this is what from the focus of the research problem,which centered on how to get companies to critical price that satisfies customers and achieve corporate objectives.
... Show Morethe electron correlation effect for inter-shell can be described by evaluating the fermi hole and partial fermi hole for Li atom comparing with Be+ and B+2 ions
This study aims to analyze spectra in real-time for λ Draconids, σ Hydrids, μ Virginid, and one sporadic meteor using spectroscopic chemical analysis and diagnose plasma parameters. Good-resolution spectroscopy and a CCD camera for meteor observation were used concurrently to examine the ablation spectra of these meteorites in situ. The Boltzmann and Lorentz methods were then used to determine the temperature and density of electrons, the length of Debye, and the frequency of plasma. Furthermore, spectra data can be analyzed and compared to data from other sources. Spectrum tests can be utilized to identify the chemical structure of meteorites' plasma.
This paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show More