Theoretical investigation of proton halo-nucleus (8B and 17Ne) has revealed that the valence protons are to be in pure (1p1/2)1 orbit for 8B and (1d3/2)2 orbit for 17Ne. The nuclear matter density distributions, the elastic electron scattering form factors and (proton, charge, neutron and matter) root-mean square (rms) are studied for our tested nuclei, through an effective two-body density operator for point nucleon system folded with two-body full correlation operator's functions. The full correlation (FC's ) takes account of the effect for the strong short range repulsion (SRC's) and the strong tensor force (TC's) in the nucleon-nucleon forces. The effective two-body density operator is produced and used to derive an explicit form for ground state two-body nucleon density distributions (2BNDD's) applicable for proton – rich halo nuclei and Fortran 95 programs are utilized to obtain theoretical values of our calculation. The effect of the TC's and SRC's on the ground state also calculated. 2BNDD's obtained within the two- frequency shell model (TFSM) approach, the elastic charge scattering form factors F(q)'s of proton halo nuclei are studied through Plane Wave Born Approximation (PWBA) .
Inelastic transverse magnetic dipole electron scattering form
factors in 48Ca have been investigated through nuclear shell model
in an excited state energy Ex= 10.23 MeV which is so called
"mystery case" with different optional choices like effective
interaction, restricted occupation and core polarization interaction.
40Ca as an inert core will be adopted and four orbits with eight
particles distributed mainly in 2p1f model space and in some extend
restricted to make sure about the major accuse about this type of
transition. Theoretical results have been constituted mainly with
experimental data and compared with some important theoretical
results of the same transition.
Nuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreInelastic magnetic electron scattering M1 at Ex =10.23 MeV form factors in Ca-48 have been investigated. The fp shell model space with four orbits and eight neutrons have been considered and FPD6 has been selected between 32 model space effective interactions to generates the model space vectors for the M1 transition with excitation energy Ex =10.23 MeV and for constructing OBDM. Discarded space (core and higher configuration orbits) has been included through the first order perturbation theory to couple the partice-hole pair of excitation in the calculation of the total M1 form factor and regarding the realistic interaction M3Y as a core polarization interaction with six sets of fitting parameters. Finally the theoretical calculations h
... Show MoreThe Harmonic Oscillator (HO) and Gaussian (GS) wave functions within the Binary Cluster Model (BCM) were employed to investigate neutron, proton and matter densities of the ground state as well as the elastic proton form factors of one neutron 8Li and 22N halo nuclei. The long tail is a property that is clearly shown in the neutron density. The existence of a long tail in the neutron densities of 8Li and 22N indicates that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section of these nuclei were calculated using the Glauber model.
The effects of short-range correlation on elastic Coulomb (charge) form factors, charge density distributions as well as root mean square charge radii of various nuclei (for instance, 46, 48, 50Ti, 52, 54Cr, 56, 58Fe, and 72, 74, 76Ge nuclei) are examined. The one- and two body terms of the cluster expansion together with the single-particle harmonic oscillator wave functions are utilized. For the purpose of embedding these effects into the formulae of charge density and form factor we employ the correlation function of Jastrow-type. These formulae depend upon the short-range correlation parameter (which instigates from the Jastr
... Show MoreAn analytical expression for the charge density distributions is derived based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. The derived expression, which is applicable throughout the whole region of shell nuclei, has been employed in the calculations concerning the charge density distributions for odd- of shell nuclei, such as and nuclei. It is found that introducing an additional parameters, namely and which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to obtain a remarkabl
... Show MoreIn the present work, the nuclear shell model with Hartree–Fock (HF) calculations have been used to investigate the nuclear structure of 24Mg nucleus. Particularly, elastic and inelastic electron scattering form factors and transition probabilities have been calculated for low-lying positive and negative states. The sd and sdpf shell model spaces have been used to calculate the one-body density matrix elements (OBDM) for positive and negative parity states respectively. Skyrme-Hartree-Fock (SHF) with different parameterizations has been tested with shell model calculation as a single particle potential for reproducing the experimental data along with a harmonic oscillator (HO) and Woods-Saxo
... Show More An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass
An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tassie mod
The Gaussian orthogonal ensemble (GOE) version of the random matrix theory (RMT) has been used to study the level density following up the proton interaction with 44Ca, 48Ti and 56Fe.
A promising analysis method has been implemented based on the available data of the resonance spacing, where widths are associated with Porter Thomas distribution. The calculated level density for the compound nuclei 45Sc,49Vand 57Co shows a parity and spin dependence, where for Sc a discrepancy in level density distinguished from this analysis probably due to the spin misassignment .The present results show an acceptable agreement with the combinatorial method of level density.
... Show More