This study was conducted to investigate the antibacterial activity of green synthesized copper oxide nanoparticles (CuO NPs) using Aloe vera. Initially, bacteria were collected from clinical samples of patients having otitis media infection and the isolates were identified at the species level following biochemical tests. Copper oxide nanoparticles were prepared by green synthesis using Aloe vera leaves and characterized using UV- visible spectroscopy at 260 nm peak. The shape and size were determined by using transmission electron microscopy (TEM) and the dimensions of the particles were more precisely determined by using scanning electron microscopy (SEM) and x-ray diffraction (XRD). Different concentrations of nanoparticles (25-50-75-100 µg/ml) were tested for antibacterial activity by using the well diffusion method. The results showed that the shape of CuO NPs was spherical with a size range of 40-10 0nm. The TEM images revealed average of dimensions of 32.34, 35.63, 51.85, 74.71 and 100 nm. The antibacterial activity results of the nanoparticles showed the following growth zone inhibition values for the different bacterial species used: Staphylococci aureus 17.1 mm, Pseudomonas aeruginosa 17 mm, Escherichia coli 16.8mm, Staphylococci epidermidis 16.4mm, Pseudomonas oryzihabitans 15.3mm, Klebsiella pneumonia 13.5mm, Citrobacter freundii 12.7mm, Enterobacter Cloacae 12.2 mm, Proteus vulgaris 8mm, Concerning the virulence factor production, the nanoparticle inhibited the production of biofilm and urease more than other virulence factors, such as gelatinase, hemolysin, protease and lecithinase, by some Gram negative and positive bacterial isolates.
A new approach and the developed FIA technique with many advantages (economic, fast, simple, accurate, and high throughput) are used to determine the decongestant drugs (Phenylephrine.HCl, Oxymetazoline.HCl) in biological samples, pharmaceutical formulations, and pure samples via continuous flow injection technique by oxidative coupling reaction, where the method depends on the interaction of the decongestant drug with organic reagents to produce colored compounds, where Phenylephrine reacts with 4-AAP at λmax503 nm to produce a red compound, and the Beer’s law range of 10-600 μg.mL-1 . As for Oxymetazoline, it reacts with DNPH at λmax 631nm to produce a green compound with a linear dynamic range of
... Show MoreThe current study aims to test the impact of green training and development on sustainable performance and explore its effects within and outside the Iraqi Ministry of Environment. The main research problem revolves around the question of the extent of implementing green training and development and sustainable performance in the ministry (What is the nature of the relationship between green training and development and sustainable performance in the ministry?). To clarify the relationship between the research variables, two main hypotheses were formulated along with sub-hypotheses. The study also aims to assess the level of the ministry's interest in the research variables and provide key recommendations to enhance sustainable performan
... Show MoreAlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreThe thin films of cadmium oxide (CdO) were deposited using the SILAR (Successive ionic layer absorption and reaction) method at various deposition cycles. CdO thin films were made on glass substrates at a temperature of 95°C, using a cadmium acetate source material and an ammonium hydroxide solution. One of the main criteria that impact the quality of thin films is the number of deposition cycles. The size of the crystals decreases with the increase in the number of cycles from 33.7 nm at the immersion cycle 10 to 22.7 nm at the immersion cycle 20, as shown by the X-ray diffraction results. The optical band gap energy of the films reduces as the number of deposition cycles increases, while the transmittance of the Cadmium oxide film i
... Show MoreZinc oxide films (ZnO) are prepared by an electrolysis technique and without vacuum and then annealed atvarious temperatures (300,400,500)OC for an hour. The structural analysis performed by X-Ray diffraction (XRD) shows,dominant orientation of this films is plane (101), has a hexagonal structure and polycrystalline pattern and it was is found that the crystal size increases(24,29) nm at annealing temperatures (300, 400)° C, but the crystal size decreases to (20 nm) at annealing temperature (500 ° C). As the results of a surface nature study of these films showed by examining the atomic force microscope (AFM), the grain size increases from (60.79 to 88.11) nm, and the surface roughnes
... Show MoreCompounds from ZnO doped with AgO in different ratio (0,3,5,7, and 9)wt.% were prepared.Thin films from the prepared compounds were deposited on a glass substrate using the pulsed laser deposition method. The XRD pattern confirmed the presence of a single-phase hexagonal wurtzite ZnO structure, without the presence of a secondary phase. AFM measurements showed an increase in both average grain size and average surface roughness with increasing concentration content of (AgO).The crystallite size of ZnO of the main peak corresponding to the preferred plane of crystal growth named (100) increases from 17.8 to 22.5nm by increasing of AgO doping ratio from 0 to 9%. The absorbance and transmittance in the wavelength range (350-1100 nm) were
... Show MoreObjective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show MoreThe research aims to study the effect of adding (Li2O) to an alkaline glaze containing (K2O, Na2O). Although all the alkaline oxides have common properties, each oxide has something that distinguishes it. The molecular weight of (Li2O) is two times less than that of (Na2O) and three times that of (K2O). Therefore, it is added in small proportions. In addition, it is a very strong flux, so it is not used alone, but rather replaces a part of other alkaline oxides. It was added to an alkali glass that matured at a temperature of 980CO in proportions (2.0,1.4,1.2,0.8,0.4%) instead of (Na2O), using lithium carbonate (Li2CO3) as an oxide source. The glazes mixtures were applied to a white pottery body, and the samples were fired and cooled acc
... Show MoreThis review article summarizes our research focused on Cu(In, Ga)Se2 (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS thin films were prepared by arrested precipitation from molecular precursors consisting of CuCl, InCl3, GaCl3 and Se metal onto Mo/soda-lime glass (SLG) substrates. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 1.5 % power conversion efficiency under AM 1.5 solar illumination. The composition and morphology
... Show More