This study was conducted to investigate the antibacterial activity of green synthesized copper oxide nanoparticles (CuO NPs) using Aloe vera. Initially, bacteria were collected from clinical samples of patients having otitis media infection and the isolates were identified at the species level following biochemical tests. Copper oxide nanoparticles were prepared by green synthesis using Aloe vera leaves and characterized using UV- visible spectroscopy at 260 nm peak. The shape and size were determined by using transmission electron microscopy (TEM) and the dimensions of the particles were more precisely determined by using scanning electron microscopy (SEM) and x-ray diffraction (XRD). Different concentrations of nanoparticles (25-50-75-100 µg/ml) were tested for antibacterial activity by using the well diffusion method. The results showed that the shape of CuO NPs was spherical with a size range of 40-10 0nm. The TEM images revealed average of dimensions of 32.34, 35.63, 51.85, 74.71 and 100 nm. The antibacterial activity results of the nanoparticles showed the following growth zone inhibition values for the different bacterial species used: Staphylococci aureus 17.1 mm, Pseudomonas aeruginosa 17 mm, Escherichia coli 16.8mm, Staphylococci epidermidis 16.4mm, Pseudomonas oryzihabitans 15.3mm, Klebsiella pneumonia 13.5mm, Citrobacter freundii 12.7mm, Enterobacter Cloacae 12.2 mm, Proteus vulgaris 8mm, Concerning the virulence factor production, the nanoparticle inhibited the production of biofilm and urease more than other virulence factors, such as gelatinase, hemolysin, protease and lecithinase, by some Gram negative and positive bacterial isolates.
In this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm. The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2), have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed. The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where
... Show MoreSynthesis and preliminary biological evaluation of imidazo (2, 1-b) Thiazole derivatives is reported. Under Mannich conditions, a series of new imidazo (2, 1-b) Thiazole derivatives were synthesized. Starting from the reaction of 2- amino thiazole with 4- bromo phenyl bromide to produce 5-(4-bromo phenyl) imidazo (2, 1-b) thiazoles, following by introduce the substituted aminomethyl at position 6-by reacting with different aromatic amines under Mannich conditions to afford 6-secondary amine-5-(4-bromo phenyl) imidazo (2,1-b) thiazole in high yields.
FT-IR, 1H NMR, and 13C NMR techniques were used to characterize the synthesized derivatives. In addition, all compounds were tested for their antioxidant activity, and thr
... Show MoreThis research included the preparation of 2-mercaptobenzoxazole (N1) by the reaction of ortho-aminophenol with carbon disulfide in an alcoholic potassium hydroxide solution. The 2-mercapto benzoxazole (N1) was then treated with hydrazine to obtain the 2-hydrazino benzoxazole (N2). A number of hydrazones (N3-N5) were prepared through the reaction of N2 with different benzaldehydes. The compound (N6) was also prepared whereby the ring closing of hydrazone (N3) using chloroacetylchloride, while the compound (N7) was prepared by treating 2-hydrazino benzoxazole with acetylacetone. When the compound (N1) was treated with formaldehyde, it afforded the compound (N8). Also, the N9 was obtained from the reaction of N1 with chloroacetic acid in th
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
A competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show MoreA simple, inexpensive, and home–built electrostatic spray deposition (ESD) system with stable cone-jet mode was used to obtain nickel oxide (NiO) thin films on glass substrates kept at temperature of 400°C. The primary precursor solution of 0.1 M concentration hydrated nickel chloride dissolved in isopropyl alcohol. The structural, optical and electrical parameters were studied. The optical absorbance spectra for the studied samples showed its maximum around 280 nm. On the other hand, thickness interferometry measurements on the tested samples showed that film thickness was around 400 nm. The optical energy gap of the prepared NiO samples was determined to be 3.75 eV and the maximum value of refractive index was determined to be 2.1 a
... Show More