Nowadays, datacenters become more complicated and handle many more users’ requests. Custom protocols are becoming more demanded, and an advanced load balancer to distribute the requests among servers is essential to serve the users quickly and efficiently. P4 introduced a new way to manipulate all packet headers. Therefore, by making use of the P4 ability to decapsulate the transport layer header, a new algorithm of load balancing is proposed. The algorithm has three main parts. First, a TCP/UDP separation is used to separate the flows based on the network layer information about the used protocol in the transport layer. Second, a flow size prediction technique is adopted, which relies on the service port number of the transport layer. Lastly, a probing system is considered to detect and solve the failure of the link and server. The proposed load balancer enhances response time of both resources usage and packet processing of the datacenter. Also, our load balancer improves link failure detection by developing a custom probing protocol.
This work investigates the effect of earthquakes on the stability of a collective pile subjected to seismic loads in the soil layer. Plaxis 3D 2020 finite element software modeled pile behavior in dry soils with sloping layers. The results showed a remarkable fluctuation between the earthquakes, where the three earthquakes (Halabja, El Centro, and Kobe) and the acceleration peak in the Kobe earthquake had a time of about 11 seconds. Different settlement results were shown, as different values were recorded for the three types of earthquakes. Settlement ratios were increased by increasing the seismic intensity; hence the maximum settlement was observed with the model under the effect of the Kobe earthquake (0.58 g), where
... Show MoreThis study aims to suggest a technique for soil properties improvement of AL- Kadhimin shrine Minaret and to support the foundation, which has a tilt of roughly 80 cm from the vertical axis. The shrine of the AL- Kadhimin is made up of four minarets with two domes set in a large courtyard. The four minarets have skewed to varying degrees due to uncontrolled dewatering inside the shrine in recent years. However, the northeast minaret was the most inclined due to its proximity to the well placed inside shrine courtyard. When the well near the minaret is operated, the water level drops, increasing the effective stresses of the soil and causing differential settling of the minaret foundation. To maintain the minaret's foundation from potenti
... Show MoreAn extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m
... Show MoreThe main objectives of present study are to evaluate the trace elements pollution in the sediment of the Tigris River and drainage canals in Wasit Governorate, Iraq. Assessment of trace elements pollutants were conducted for 18 sediment samples collected in March 2017. Trace elements were analyzed in sediment Tigris River samples in Wasit Governorate. This metal pollution was evaluated using geo-accumulation (I-geo) index, Contamination Factor (CF) and Pollution Load Index (PLI). According to these statistical indices, the sediments collected from Tigris River in the study area are highly polluted with Titanium (71.9 ppm), Nickel (226.6 ppm) Chromium (425.2 ppm), Cadmium (2ppm) and Molybdenum (15.8 ppm) while the sediments&nb
... Show MoreA structural and engineering geological study of rock slope stability was carried out in six stations that lie in the Southwest of Baranan mountain, along Sirwan road. The rock slopes and discontinuities were surveyed at each of these stations, and the relationships with failures were determined. The slopes were classified on the basis of (Al-Saadi, 1981), and the rocks were described in engineering terms according to (Anon, 1972) and (Hawkins, 1986), Stereographic projection was made using software (GEOrient 9.5.0) to represent the field data that were recorded in order to understand the situation in the six stations (sites) that were chosen along Sirwan road near Darbandikhan dam, the failures' types were recorded during field study we
... Show MoreTen soil samples were collected from Ishaqi project area, Salah Al-Dean Governorate, and analysed for chemical elements (Fe2O3, Al2O3, CaO, K2O Na2O, Co, Zn, Cu, and Pb) to detect the pollution in the study soil using the indices of geo-accumulation (I-geo), contamination factor (CF), and pollution load index (PLI), The results of I-geo indicate that the soil of Ishaqi project area is unpolluted with Pb, Co and slightly polluted with Zn and Cu. The results of CF for Zn, Cu, and Co showed class 2 of moderate contamination and class 1 of low contamination in some samples while those for Pb demonstrated class 1 –of low contamination. The Pollution Load Index (PLI) values for Co, Zn, Cu, and Pb showed cla
... Show MoreMulti-belled piles are piles with enlarged ends; these piles have one or further bells at the lower third part of the pile. These piles are suitable for many soils with problems such as softening clay, the variation of groundwater table, expansive soils, black cotton soil, and loose sand. The current study reviewed the behavior of belled piles in multi-layer soils subjected to axial compression and pullout loading. The review covered the experimental and theoretical works on belled piles in multi-layered soils. These piles were subjected to static and dynamic loadings in compression and pullout cases. Most theoretical results focused on software such as PLAXIS 3D. The axial load applied on the piles comes from the upper
... Show MoreIn engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreUnder-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numerical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci
... Show More