In recent years, the rapid development in the field of wireless technologies led to the appearance of a new topic, known as the Internet of things (IoT). The IoT applications can be found in various fields of our life, such as smart home, health care, smart building, and etc. In all these applications, the data collected from the real world are transmitted through the Internet; therefore, these data have become a target of many attacks and hackers. Hence, a secure communication must be provided to protect the transmitted data from unauthorized access. This paper focuses on designing a secure IoT system to protect the sensing data. In this system, the security is provided by the use of Lightweight AES encryption algorithm to encrypt the data received from physical environment. The hardware used in this proposal is the Raspberry Pi 3 model B and two types of sensors. The LAES algorithm was embedded inside the Raspberry in order to protect the sensing data, that come from sensors connected to the Raspberry Pi, before sending them through the network. The analysis results show that the proposed IoT security system consumes less time in encryption/decryption and has high throughput when compared with others from related work. Its throughput is higher in about 19.24% than the value reported for one system in the related studies.
The widespread use of images, especially color images and rapid advancement of computer science, have led to an emphasis on securing these images and defending them against intruders. One of the most popular ways to protect images is to use encryption algorithms that convert data in a way that is not recognized by someone other than the intended user. The Advanced Encryption Standard algorithm (AES) is one of the most protected encryption algorithms. However, due to various types of theoretical and practical assaults, like a statistical attack, differential analysis, and brute force attack, its security is under attack.
In this paper, a modified AES coined as (M-AES) is proposed to improve the efficiency
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreThis research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Fruits sorting, recognizing, and classifying are essential post-harvest operations, as they contribute to the quality of food industry, thereby increasing the exported quantity of food. Today, an automated system for fruit classification and recognition is very important, especially when exporting to markets where quality of fruit must be high. In this study, the advantages and disadvantages of the various shape-based feature extraction algorithms and technologies that are used in sorting, classifying, and grading of fruits, as well as fruits quality estimation, are discussed in order to provide a good understanding of the use of shape-based feature extraction techniques.
Alongside the development of high-speed rail, rail flaw detection is of great importance to ensure railway safety, especially for improving the speed and load of the train. Several conventional inspection methods such as visual, acoustic, and electromagnetic inspection have been introduced in the past. However, these methods have several challenges in terms of detection speed and accuracy. Combined inspection methods have emerged as a promising approach to overcome these limitations. Nondestructive testing (NDT) techniques in conjunction with artificial intelligence approaches have tremendous potential and viability because it is highly possible to improve the detection accuracy which has been proven in various conventional nondestr
... Show More