The present study was designed to explore the relationship between radioactivity at Al-Rohban soil in Al-Najaf Governorate, located 30 km away from Najaf city center, and its microbial content. The radiological survey was conducted by γ–ray spectrometry, using purity Germanium (HPGe) detector. A selected surface soil layer (10 cm depth, 50 and 100 m expansion) was tested. The physical analyses were conducted in the Ministry of Environment, Center for Prevention of Radiation. The results showed that the estimated concentrations of Bi-214, Ra-226, Ac-228, Th-232, K-40 and Cs-137 were 47.93, 81.87, 5.03, 1.63, 126.3 and 3.5 Bq/Kg, respectively. Isotopes average concentrations were equivalent to the lowest specified International Atomic Energy standards. As related to the analysis of bacterial content in the soil sample, the total cell count (in cells per gram of soil) in the different areas studied (R1, R2, R3 and R4) had values of 70000, 200, 60000 and 300 cell/gm., respectively. The statistical analysis of these results revealed no relationship between radioactivity and microorganisms existence.
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
The possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show MoreHepatitis C virus (HCV) is a liver disease that affects14 million people. Feasible research was conducted for identifying the genotypes and allele frequency of some single nucleotide polymorphisms (SNPs) of the IL-28β genes and their predictive role in disease incidence in Iraqi patients. The SNPs (rs28416813, rs4803219, rs11881222, and rs8103142) of IL-28β have been associated with susceptibility to several diseases. Ninety eight (98) HCV patients were included in this research; with average age ± SE (42.28 ± 3.44) years. Also, 80 healthy people (with average age ± SE (29.40 ± 2.84) years) were included as a control group. The SNPs were detected by allele-specific PCR (polymerase chain reaction) using specific primers. The re
... Show MoreNovel derivatives of 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole and 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole carrying Schiff bases moiety were synthesised and fully characterised. The protection of D- fructose using benzoyl chloride was synthesized, followed by nucleophilic addition/elimination between benzotria- zole and chloroacetyl chloride to give 1-(1- chloroacetyl)- 1H-benzotriazole. The next step was condensation reaction of protected fructose and 1-(1-chloroacetyl)-1H- benzotriazole producing a new nucleoside analogue. The novel nucleoside analogues underwent a second conden- sation reaction with different aromatic and aliphatic amines to provide new Schiff b
... Show MoreAbstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
The efficiency of solar energy absorption in solar heaters is increased by the use of selective absorption coating that possesses high absorption of solar radiation in the UV-visible spectrum as well as low emission at the operating temperature in the infrared region. In this work, novel selective coatings were synthesized by improving the selectivity of chromium oxide (Cr2O3) nanoparticles by doping with carbon nanoparticles using the exploding wire technique for carbon rods by high current in suspended Cr2O3 particles. The structural properties and surface topography were studied by XRD and FE-SEM, which illustrate the carbon-coated Cr2O3 nanoparticles. The prepar
... Show More