In this work, a (CdO)0.94:(In2O3)0.06 film was developed on a glass substrate using Q- switching pulse laser beam (Nd:YAG; wavelength 1064 nm). The quantitative elemental analysis of the (CdO)0.94:(In2O3)0.06 thin film was achieved using energy dispersive X- ray diffraction (EDX). The topological and morphological properties of the deposited thin film were investigated using atomic force microscope (AFM) and field emission scan electron microscopy (FESEM). The I-V characteristic and Hall effect of (CdO)0.94 :(In2O3)0.06 thin films were used to study the electrical properties. The gas sensor properties of the film prepared on n-Si were investigated for oxidization and reduction gases.
A comparison of gas sensing performance of V2O5:Ag nanoparticles as thin film and as bulk pellet toward NO2 and NH3 is presented. V2O5:Ag nanoparticles thin films were deposited by vacuum thermal evaporation method on glass substrates while the pellets were prepared by powder technology. XRD patterns of thin film and pellet were polycrystalline with an orthorhombic structure. The value of average grain size is about 60 nm. The morphological properties of the samples have been distinguished by atomic force microscopy (AFM) and field effect scanning electron microscopy (FESEM) which indicated that the films showed homogeneous surfaces morphology a
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
Schiff bases, named after Hugo Schiff, are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also have a broad range of applications as antioxidants. An overview of antioxidant applications of Schiff bases and their complexes is discussed in this review. A brief history of the synthesis and reactivity of Schiff bases and their complexes is presented. Factors of antioxidants are illustrated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Development of improved methods for the synthesis of metal oxide nanoparticles are of high priority for the advancement of material science and technology. Herein, the biosynthesis of ZnO using hydrahelix of beta vulgaris and the seed of abrus precatorius as an aqueaus extracts adduced respectivily as stablizer and reductant reagent. The support are characterized by spectroscopic methods ( Ft-IR, Uv-vis ).The FTIR confirmed the presence of ZnO band. The Uv-visible showed absorption peak at corresponds to the ZnO nanostructures. X-ray diffraction, scaning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX) techniques are taken to investigation the size, structure and composition of synthesised ZnO nanocrystals. The XRD pattern mat
... Show MoreThe Schiff bases (1-10) were synthesized by the reaction of cefixime with aldehydes derivatives. The characterization of Schiff bases were carried out, by using spectroscopic techniques including IR, U.V – Vis, H1-NMR, EI-MS along with elemental analyses (C.H.N.).
In the present work, several new cyclic imides (succinimides) linked to benzothiazole or thiazole moieties through phenyl azo group were synthesized. Synthesis of the new imides was performed via multistep synthesis. The first step involved reaction of equimolar amounts of succinic anhydride and p-toluidine producing N-(4-tolyl) succinamic acid (1) which was dehydrated in the second step via treatment with acetic anhydride and anhydrous sodium acetate affording N-(4-tolyl)succinimide (2).
In the third step, substituted-2-aminobenzothiazoles were introduced in diazotization reaction with nitrous acid producing the corresponding diazonium salts and these inturn were introduced directly in coupling reaction with compound (2) affording th
oupling reaction of 4-aminoantipyrene with the (L-Histidine) gave the new bidentate azo ligand.The prepared ligand was identified by FT.IR, UV-Vis and HNMR spectroscopics technique. Treatment of the prepared ligand was done with the following metal ions (Ag+ ,Pb+2 ,Fe+3 ,Cr+3 ) in aqueous ethanol with a1:1 and 1:2 M:L ratio . The prepared complexes were characterized by using FT. IR and UV- VIS spectroscopic method as well as conductivity measurements. Their structures were suggested according to the results obtained.
The symmetrical N,N‾-Bis-(4-methyl phenyl) pyromellitamic diacid (I) was synthesized from the reaction of toludine with pyromellitic dianhydride in dry acetone. Esterification of amic acid (I) with dimethyl sulphate in basic medium using acetone as a solvent give symmetrical N,N‾-bis-( 4- methyl phenyl ) pyromellitam diacetate (II). The condensation of new ester with hydrazine hydrate in ethanol leads to the formation symmetrical N,N‾-bis- (4-methyl phenyl) pyromellitamic hydrazide (III). New symmetrical 1,3-oxazepine derivatives (V)a-e can be synthesized from the reaction of the new synthesized Schiff bases (III)a-e (which are synthesized from the reaction new hydrazide
... Show MoreA new derivatives of Schiff bases connected with 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c were prepared via many reactions starting by treating 1,4-phenylene diamine 1 with chloroacetylchloride to prepared compound 2, then reaction with p-hydroxybenzaldehyde to synthesize compound 3 then, this was reacted with thioglycolic acid and thiosemicarazide to giveN,N-(1.4-phenylene)bis(2-(4-(2-amino-5Hthiazolo[4,3-b][1,3,4]thiadiazol-5-yl)phenoxy)acetamide) 4. Compound 4 was treated with different aromatic aldehydes to give a new derivatives of Schiff bases containing 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c. The synthesized compounds were characterized using FTIR spectrophotometer and 1H NMR spectroscopy and the biological activity of
... Show More