This paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreThis paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreThis paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.
The paper is concerned with the state and proof of the solvability theorem of unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin theorem (AUTH), when the boundary control vector (BCV) is known. Solvability theorem of a boundary optimal control vector (BOCV) with equality and inequality state vector constraints (EINESVC) is proved. We studied the solvability theorem of a unique solution for the adjoint triple boundary value problem (ATHBVP) associated with TNLHBVP. The directional derivation (DRD) of the "Hamiltonian"(DRDH) is deduced. Finally, the necessary theorem (necessary conditions "NCOs") and the sufficient theorem (sufficient co
... Show MoreFear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the
... Show MoreABSTRACT. 4-Sulfosalicylic acid (SSA) was used as a ligand to prepare new triphenyltin and dimethyl-tin complexes by condensation with the corresponding organotin chloride salts. The complexes were identified by different techniques, such as infrared spectra (tin and proton), magnetic resonance, and elemental analyses. The 119Sn-NMR was studied to determine the prepared complexes' geometrical shape. Two methods examined the antioxidant activity of (SSA) and prepared complexes; Free radical scavenging activity (DPPH) and CUPRRAC methods. Tri and di-tin complexes gave high percentage inhibition than ligands with both methods due to tin moiety; the triphenyltin carboxylate complex was the best compared with the others. Also, antibacter
... Show MoreIn this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreCritical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge
... Show MoreIn this paper, the oscillation of a Hematopoiesis model in both cases delay and non-delay are discussed. The place and are continuous pstive -rdic functions. In the nn-dlay cse, we will exhibit that a nonlinear differential equation of hematopoiesis model has a global attractor for all different pstive solutions. Also, in the delay case, the sufficient conditions for the oscillation of all pstive solutions of it aboutare presented and we establish sufficient cnditions for the global attractive of. To illustrate the obtained results some examples are given.