In this study, the electron energy distribution function (EEDF), the electron swarm parameters , the effective ionization coefficients, and the critical field strength (dielectric strength) in binary He-H2 gas mixture which is used as cryogenic for high-temperature superconducting power applications, are evaluated using two-term solution of the Boltzmann equation over the range of E/N ( the electric field to gas density) from 1 to 100 Td ( 1 Td=10-17 Vcm2) at temperature 77 K and pressure 2MPa, taking into account elastic ( momentum transfer) and inelastic cross-sections. Using the electron energy distribution function (EEDF) electron swarm parameters (electron drift velocity, mean electron energy, diffusion coefficient, electron mobility, ionization and attachment coefficient) are calculated. At low reduced electric field strength E/N, the EEDF is close to Maxwellian distribution, at high E/N, due to vibrational excitation of H2, the calculated distribution function is non-Maxwellian. Besides, the Boltzmann equation analysis showed as the small mole fraction of H2 in the He-H2 mixture is increased, the electron energy distribution function EEDF shifts to lower energy region, the density-reduced ionization coefficient α/N and density-reduced effective ionization coefficient (α-η)/N decreases, whereas density-reduced attachment coefficient η/N, density-reduced critical electric field strength increases, (E/N)crt and critical electric field Ecrt increases. It is found that dielectric field strength depends on pressure and temperature. To confirm the validity of the two term solution of Boltzmann equation analysis, a set of elastic and inelastic cross-sections for each gas He and H2 are used to calculate the electron swarm parameters and dielectric field strength. Compared with previous experimental and theoretical literatures, the values obtained are generally in good agreement.
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v
... Show MoreAbstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreIn the present study, the physical characteristics of elastomer (EL) blend with natural polymers such as polyvinyl alcohol (PVA), Dexrin (D), Arabic gum (AG), and corn starch (CS) based on high-density fiberboard wood adhesives were investigated. The EL blends were prepared by dissolving AG, D, PVA, and CS in deionized water at 70 °C for 1 h under magnetic stirring continuously until the solution was clear, and blends were made with a weight of 60/40 (w/w); then were cast into a mold with a 20 cm diameter and left at room temperature for 24 h to ensure complete water removal and drying of the samples. The prepared EL and EL blend structures, adhesion strengths, roughness, wettings, and dielectric strengths, were investigated. The modifi
... Show MoreThe dielectric properties of the fabricated composites MgO:ZnO with various mixing ratios (100,75:25,50:50,25:75, and 100 wt. %)were investigated. The structure analysis was conducted using X-ray diffraction. The structure phase, crystallite size and purity of the fabricated MgO:ZnO composites were confirmed using X-ray diffraction spectra. The results declared that the diffraction spectrum of 100%MgO composite samples were compatible with cubic structure along the plane (200) while the structures of residual composite's samples were compatible with hexagonal structures. The crystal size of the most pronounced plane (101) for crystal growth was changed from 30.4 nm to 53.2 nm by increasing ZnO ratio from 25 to 100wt%. The diel
... Show MoreThe V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and
... Show MoreIn this work, samples of Cd2Si1-xGexO4 prepared by powder technology for (x = 0, 0.3, 0.6) were studied. The effect of (Ge) additives at different ratio of Ge (x=0, 0.3, 0.6) on the behavior of dielectric constant, dielectric loss and a,c conductivity were measured as a function of temperature at a selected frequencies (0.01 – 10) MHz in the temperature range 298 K to 473 K. The dielectric constant and dielectric loss obtained different behavior with the additives of (Ge). The activation energy for the electrical conduction process was studied.
Lithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation fa
... Show More