Preferred Language
Articles
/
ijs-3104
Spectroscopic Analysis of Clove Plasma Parameters Using Optical Emission Spectroscopy
...Show More Authors

     In the current study, the emission spectra generated from clove were measured under normal atmospheric pressure with different laser energies. Clove is used as a source of essential oil in herbal medicine, in particular as a dynamic analgesic oil in dental and other diseases. For aromatherapy, Antiseptic, antiviral, and antimicrobial agents are also packaged with cloves. Compounds that reduce inflammation tend to battle sore throats, cold, and cough as they display so many advantages. The measured spectrum reveals distinctive lines of clove’s chemical elements. X-ray fluorescent (XRF) and atomic absorption spectrometry (AAS) were used to measure the spectrum generated or absorbed by detecting the presence of various elements and their ratios in the cloves, for different energy the electron temperature varies between 0.043 and 0.073 eV and the number of electron varied between 2.074 and 2.287) x1014 cm-3 for clove.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Minar International Journal Of Applied Sciences And Technology
Electron density spectroscopic measurement in Al laser induced plasma
...Show More Authors

Plasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri

... Show More
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
The Effect of Grain Size-Secondary Electron Emission on Grain Growth in Dusty Plasma
...Show More Authors

The calculation of the charge on an isolated dust grain immersed in plasma with different grain sizes is a challenging one, especially under moderately high plasma temperature when secondary electron emission significant. The discrete charging model is used to calculate the charges of dust grain in dusty plasma. In this model, we included the effect of grain size dependence on secondary electron emission. The results show that the secondary electron emission from the glass dust grains due to energetic electron (40eV) can lead to the small grain to be slightly more positive than the large grain. Under these conditions, the smaller and larger grains would be attracted rather than repelled, which possibly lead to enhanced coagulation rates.

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Electrical, thermal and optical characteristics of plasma torch
...Show More Authors

Non thermal argon plasma needle at atmospheric pressure was constructed. The experimental set up was based on simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases which flow at atmospheric pressure. A high AC power supply was used with 9.6kV peak to peak and 33kHz frequency. The plasma was generated using two electrodes. The voltage and current discharge waveform were measured. The temperature of Ar gas plasma jet at different gas flow rate and distances from the plasma electrode was also recorded. It was found that the temperature increased with increasing frequency to reach the maximum value at 15 kHz, and that the current leading the voltage, which demonstra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Influence of the homogeneous magnetic field of the laser-induced breakdown spectroscopy of copper plasma
...Show More Authors

Copper plasma is generated with the existence of an external magnetic field and without its presence utilizing Nd:YAG laser (1064 nm ,9 ns) in different  pulse laser energy which ranges from(100 to 400) mJ in a vacuum. Plasma parameter beta ) is least than 1, this indicates that the existence of magnetic field confinement effect is proven. Note that both the electron temperature and electron density increases with the laser pulse energy increasing , Both are higher in the presence of a magnetic field.

View Publication Preview PDF
Publication Date
Thu Dec 23 2021
Journal Name
Iraqi Journal Of Science
Spatial Analysis of the CO Emission from Nineveh Governorate Using Remote Sensing Techniques and GIS
...Show More Authors

     Carbon Monoxide (CO) has a significant indirect effect on greenhouse gasses due to its ozone and carbon dioxide precursor, and its mechanism of degradation involving the hydroxyl radical (OH) which control the oxidizing ability of the tropospheric. To understand the effect of human activities on atmospheric composition, accurate estimates of the sources of atmospheric carbon monoxide (CO) are necessary. MOPITT (Measurements of Pollution in the Troposphere) is a NASA Terra satellite instrument designed to allow both Thermal-Infra-Red (TIR) and Near-Infra-Red (NIR) observations to be used to collect vertical CO profiles in the Troposphere via the concept of correlation spectroscopy. The objective of the current stu

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Spectroscopic measurements of the electron temperature in low pressure microwave 2.45 GHz argon plasma
...Show More Authors

The main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Correlation of Paschen parameters in magnetized argon plasma
...Show More Authors

A number of glow discharge experiments has been carried out in a relatively large-volume metallic vacuum chamber containing argon at low pressure and immersed in an inhomogeneous magnetic field generated by a solenoidal coil capable of delivering 2100G. Two Paschen curves demonstrating the dependence of the discharge voltage on sparking parameter Pd and magnetic field strength B were deduced. A graphical correlation showing the behaviour of the voltage difference from the two curves on the ratio B/Pd was constructed. Investigations showed a reduction in the nominal impedance of the discharge device of nearly 20% when B reaches a value of 525G. Plasma confinement regions were found around the internal surface of the chamber at the entranc

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nanoscience
Synthesis and Spectroscopic Characterization of Platinum Nanoparticles by Plasma Jet Method
...Show More Authors

In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Measurements and Calculations of parametrs of Zinc Oxide Plasma Produced by Laser induced Breakdown Spectroscopy
...Show More Authors

          In this work, the optical emission characteristics of the ZnO plasma were presented. The plasma parameters: electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD) were  studied with  a spectrometer that collects the spectrum ZnO plasma in air produced by Nd:YAG laser,(λ=1064 nm) at ratio X=0.5 in the range of energy of (700-1000 mJ), duration (10 ns). The Boltzmann plot methodwas employed to calculate the electron temperature (Te), while the Stark broadening  was used to determine the electron density (ne), Debye duration (λD), and plasma frequency (fp).  Te, ne, and fp

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Spectroscopic study of dielectric barrier discharge argon plasma at different gas flow rates
...Show More Authors

Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni

... Show More
View Publication
Scopus Crossref