The spread of antibiotic resistant bacteria is a worldwide problem. Due to the importance of P. aeruginosa as a multidrug resistant bacterium, this study aimed, through molecular techniques, to detect point mutations in chromosomal genes responsible for the quinolones class of antibiotics resistance. A total of 52 isolates from burn infections were identified using specific primers for P. aeruginosa 16S rDNA. Ciprofloxacin minimum inhibitory concentrations (MIC) were estimated using the agar dilution assay. DNA sequences of the quinolone resistance-determining regions of gyrA and parC were determined for detecting the mutations found in these genes and the relations among the isolates by constructing phylogenetic trees. The results revealed that only 43 (82.7%) of isolates were P. aeruginosa, of which 31 (72.06%) were resistant to different concentrations of ciprofloxacin, ranging between 4 and >32 µg/ml. Twenty six isolates were selected for sequencing, including sensitive, intermediately resistant, and highly resistant to ciprofloxacin. The ciprofloxacin sensitive isolates did not exert any amino acid alterations in gyrA or parC genes; however, a single intermediately resistant isolate had a single mutation at each gene. Of the total resistant isolates (20), 6 isolates had no mutations at different MIC levels, While 14 isolates had Thr-83-Ile substitution in gyrA and Ser-87-Leu substitution in parC, only five isolates had a second mutation, namely Asp-87-Asn, in gyrA. The phylogenetic analysis of the studied groups showed divergence from the P. aeruginosa PAO1 and PAO1OR reference strains due to increased mutations and polymorphisms in studied isolates. In conclusion, P. aeruginosa occurrence was increased in burn infections and the fluoroquinolones in current use are not as effective as before; the main resistance mechanism in local clinical isolates of P. aeruginosa is mutations, where the main target of fluoroquinolones is gyrA gene.
In this study, the acid-alkaline transesterification of refined coconut seed oil (RCOSO) to fatty acid methyl ester was followed by the production of a trimethylolpropane-based thermosensitive biolubricant using potassium hydroxide, and its physicochemical characteristics were evaluated. The American Standard Test for Materials (ASTM) was employed to ascertain the biolubricant's pour point and index of viscosity, which were found to be -4 oC and 283.75, respectively. The opposite connection between lubricant viscosity and temperature was shown by the measured viscosities at varied transesterification to be transformed into biodiesel. Following this, a biolubricant was created by further transesterifiedtemperature. The ester gr
... Show MoreThirty five samples were collected from patients (1-30) years old, suffered from, infected skin , rushes, boils , oral thrush, anal & vaginal itches. Candida albicans 57.3% (20 isolates) and Candida tropicalis 22.5% (8 isolates) Aspergillus fumegatus 11.5% (4 isolates) Aspergillus nigar 8.7%(3 isolates) , were isolated & identified from these samples. Alcoholic & water hot extracts of the punica granatum (Pomegranate) peels as well as the dried powder were prepared. The anti-fungal activity of the extracts was evaluated by means of the agar-well diffusion assay. The extract exhibited potent activity against yeast. The Minimum inhibitory concentra
... Show MoreRare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as
... Show MoreIn this research, cyclic compounds derived from 2- furfural mercaptan (oxazole, triazoles) were synthesized, and their biological efficacy was measured and compared with standard drugs. Also, their effectiveness as anti-oxidant was measured and compared with ascorbic acid as a standard substance. Some of the synthesized compounds were deduced with good efficacy. © 2021 Sami Publishing Company. All rights reserved
Indole acetic acid (IAA) produced from F. oxysporum (F2) was purified by several steps included extraction by cold ethyl acetate ; Column chromatography using silica gel and TLC chromatography . The pure indole acetic acid (IAA) which produce by F. oxysporum (IAA) was tested by ultraviolet spectra at (200-300)nm ; and appear that the maximum absorbance at 229nm , the high performance liquid chromatography (HPLC) used to test the purity of the indole acetic acid and the results showed one peak at appearance time 3.822 min
The present study aims to convert obsidian rocks into spongy gravel for the use in the production of lightweight and heat insulating concrete. The rocks were burned at 960°C to achieve maximum swelling of the samples, then broken into gravel and sand sizes. For comparison purposes, two other types of aggregates were used, namely pumice and basalt. The main physical tests, such as specific gravity, bulk density, porosity, and water absorption were performed. For testing the resistance of samples to alkalinity, KOH and Na OH solutions were used. The results showed that the obsidian sample gave the best specifications, where its specific gravity was 0.33, while the values were 1.1 for pumice and 2.7 for basalt, with the
... Show MoreAn extracellular β-galactosidase from the thermophilic fungus Rhizomucor
Pusillus IB8 has been purified via several steps included precipitation by ammonium
sulphate at 80 % saturation, DEAE- Cellulose Ion exchange chromatography and gel filteration on sepharose CL-6B column. The Final purification folds and the yield of the enzyme were 42.5 and 24.8 % respectively. The purified β-galactosidase has an optimum pH for its activity between 4.5 to 5, while the optimum pH for enzyme stability was between 5 to 5.5. Futhermore, it was found that the optimum temperature for its activity was 60 C°. The purified enzyme retained approximatly 98% of its original activity when incubated at 60 C° for 60 min. However, 25 % of its activity was