Humans use deception daily since it can significantly affect their life and provide a getaway solution for any undesired situation. Deception is either related to low-stakes (e.g. innocuous) or high-stakes (e.g. with harmful situations). Deception investigation importance has increased, and it became a critical issue over the years with the increase of security levels around the globe. Technology has made remarkable achievements in many human life fields, including deception detection. Automated deception detection systems (DDSs) are widely used in different fields, especially for security purposes. The DDS is comprised of multiple stages, each of which should be built/trained to perform intelligently so that the whole system can give the right decision of whether the involved person is telling the truth or not. Thus, different artificial intelligent (AI) algorithms have been utilized by the researchers over the past years. In addition, there are different cues for DDS that have been considered for the previous works, which are either related to verbal or non-verbal cues. This paper presents a review on the basic methods and the used deception detection techniques for the recent 10 years, that were studied and performed in the field of DDS, with a comparison of the deception detection accuracy reached and the number of participants used for system training.
The research deals with an evolutionary-based mutation with functional annotation to identify protein complexes within PPI networks. An important field of research in computational biology is the difficult and fundamental challenge of revealing complexes in protein interaction networks. The complex detection models that have been developed to tackle challenges are mostly dependent on topological properties and rarely use the biological properties of PPI networks. This research aims to push the evolutionary algorithm to its maximum by employing gene ontology (GO) to communicate across proteins based on biological information similarity for direct genes. The outcomes show that the suggested method can be utilized to improve the
... Show MoreBuilding Information Modeling (BIM) is extensively used in the construction industry due to its benefits throughout the Project Life Cycle (PLC). BIM can simulate buildings throughout PLC, detect and resolve problems, and improve building visualization that contributes to the representation of actual project details in the construction stage. BIM contributes to project management promotion by detecting problems that lead to conflicts, cost overruns, and time delays. This work aims to implement an effective BIM for the Iraqi construction projects’ life cycle. The methodology used is a literature review to collect the most important factors contributing to the success of BIM implementation, interview the team of the Cent
... Show MoreDue to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modulari
... Show MoreThe gravity and magnetic data of Tikrit-Kirkuk area in central Iraq were considered to study the tectonic situation in the area. The residual anomalies were separated from regional using space windows method with space of about 24, 12 and 10km to delineate the source level of the residual anomalies. The Total Horizontal Derivative (THD) is used to identify the fault trends in the basement and sedimentary rocks depending upon gravity and magnetic data. The identified faults in the study area show (NW-SE), less common (NE-SW) and rare (N-S) trends. Some of these faults extending from the basement to the upper most layer of the sedimentary rocks. It was found that the depth of some gravity and magnetic source range 12-13Km, which confirm th
... Show MoreThe inefficient use of spectrum is the key subject to overcome the upcoming spectrum crunch issue. This paper presents a study of performance of cooperative cognitive network via hard combining of decision fusion schemes. Simulation results presented different cooperative hard decision fusion schemes for cognitive network. The hard-decision fusion schemes provided different discriminations for detection levels. They also produced small values of Miss-Detection Probability at different values of Probability of False Alarm and adaptive threshold levels. The sensing performance was investigated under the influence of channel condition for proper operating conditions. An increase in the detection performance was achi
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThe advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show More