In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from the whole features set. Thus, it obtains efficient botnet detection results in terms of F-score, precision, detection rate, and number of relevant features, when compared with DT alone.
This research is seeks to state the role of Green Human Resources Management Practices and their dimensions (Green Employment and Selection, Green Performance Assessment, Green Training & Development and Green Compensation and Stimulation Systems) in strengthening the Strategic Positioning in the Nongovernmental Hospitals in Erbil city, and aims to analyze the relationship between Green Human Resources Management Practices and Strategic Positioning and to show the impact of Green Human Resources Management Practices in determining the Strategic Position.
It is depended on a questionnaire as key tools for achieving data, as designed on
... Show MoreReferral techniques are normally employed in internet business applications. Existing frameworks prescribe things to a particular client according to client inclinations and former high evaluations. Quite a number of methods, such as cooperative filtering and content-based methodologies, dominate the architectural design of referral frameworks. Many referral schemes are domain-specific and cannot be deployed in a general-purpose setting. This study proposes a two-dimensional (User × Item)-space multimode referral scheme, having an enormous client base but few articles on offer. Additionally, the design of the referral scheme is anchored on the and articles, as expressed by a particular client, and is a combination of affi
... Show MoreRecently, biometric technologies are used widely due to their improved security that decreases cases of deception and theft. The biometric technologies use physical features and characters in the identification of individuals. The most common biometric technologies are: Iris, voice, fingerprint, handwriting and hand print. In this paper, two biometric recognition technologies are analyzed and compared, which are the iris and sound recognition techniques. The iris recognition technique recognizes persons by analyzing the main patterns in the iris structure, while the sound recognition technique identifies individuals depending on their unique voice characteristics or as called voice print. The comparison results show that the resul
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
The industrial factory is one of the challenging environments for future wireless communication systems, where the goal is to produce products with low cost in short time. This high level of network performance is achieved by distributing massive MIMO that provides indoor networks with joint beamforming that enhances 5G network capacity and user experience as well. Judging from the importance of this topic, this study introduces a new optimization problem concerning the investigation of multi-beam antenna (MBA) coverage possibilities in 5G network for indoor environments, named Base-station Beams Distribution Problem (BBDP). This problem has an extensive number of parameters and constrains including user’s location, required d
... Show MoreThe improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active ante
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
Wireless Sensor Networks (WSNs) are composed of a collection of rechargeable sensor nodes. Typically, sensor nodes collect and deliver the necessary data in response to a user’s specific request in many application areas such as health, military and domestic purposes. Applying routing protocols for sensor nodes can prolong the lifetime of the network. Power Efficient GAthering in Sensor Information System (PEGASIS) protocol is developed as a chain based protocol that uses a greedy algorithm in selecting one of the nodes as a head node to transmit the data to the base station. The proposed scheme Multi-cluster Power Efficient GAthering in Sensor Information System (MPEGASIS) is developed based on PEGASIS routing protocol in WSN. The aim
... Show MoreIn this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL, simulated using Xilinx ISE 9.2i package, and implemented using Spartan-3A XC3S700A FPGA kit. Implementation and Simulation behavioral model results show that the proposed intelligent traffic light system model satisfies the specified operational req
... Show More