In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical definition for network lifetime in the IoT is to increase the period of cooperation between objects to carry out all the assigned tasks. The main contribution in this paper is to address the problem of task allocation in the IoT as an optimization problem with a lifetime-aware model. A genetic algorithm is proposed as a task allocation protocol. For the proposed algorithm, a problem-tailored individual representation and a modified uniform crossover are designed. Further, the individual initialization and perturbation operators (crossover and mutation) are designed so as to remedy the infeasibility of any solution located or reached by the proposed genetic algorithm. The results showed reasonable performance for the proposed genetic-based task allocation protocol. Further, the results prove the necessity for designing problem-specific operators instead of adopting the canonical counterparts.
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreInternet of Vehicle (IoV) is one of the most basic branches of the Internet of Things (IoT), which provides many advantages for drivers and passengers to ensure safety and traffic efficiency. Most IoV applications are delay-sensitive and require resources for data storage and computation that cannot be afforded by vehicles. Thus, such tasks are always offloaded to more powerful nodes, like cloud or fog. Vehicular Fog Computing (VFC), which extends cloud computing and brings resources closer to the edge of the network, has the potential to reduce both traffic congestion and load on the cloud. Resources management and allocation process is very critical for satisfying both user and provider needs. However, th
... Show MoreIn this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreThe need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone
... Show MoreThe need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone with a slun
... Show MoreCloud computing is a pay-as-you-go model that provides users with on-demand access to services or computing resources. It is a challenging issue to maximize the service provider's profit and, on the other hand, meet the Quality of Service (QoS) requirements of users. Therefore, this paper proposes an admission control heuristic (ACH) approach that selects or rejects the requests based on budget, deadline, and penalty cost, i.e., those given by the user. Then a service level agreement (SLA) is created for each selected request. The proposed work uses Particle Swarm Optimization (PSO) and the Salp Swarm Algorithm (SSA) to schedule the selected requests under budget and deadline constraints. Performances of PSO and SSA with and witho
... Show MoreSteganography is a useful technique that helps in securing data in communication using different data carriers like audio, video, image and text. The most popular type of steganography is image steganography. It mostly uses least significant bit (LSB) technique to hide the data but the probability of detecting the hidden data using this technique is high. RGB is a color model which uses LSB to hide the data in three color channels, where each pixel is represented by three bytes to indicate the intensity of red, green and blue in that pixel. In this paper, steganography based RGB image is proposed which depends on genetic algorithm (GA). GA is used to generate random key that represents the best ordering of secret (image/text) blocks to b
... Show MoreRecently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreMeerkat Clan Algorithm (MCA) is a nature-based metaheuristic algorithm which imitates the intelligent behavior of the meerkat animal. This paper presents an improvement on the MCA based on a chaotic map and crossover strategy (MCA-CC). These two strategies increase the diversification and intensification of the proposed algorithm and boost the searching ability to find more quality solutions. The 0-1 knapsack problem was solved by the basic MCA and the improved version of this algorithm (MCA-CC). The performance of these algorithms was tested on low and high dimensional problems. The experimental results demonstrate that the proposed algorithm had overcome the basic algorithm in terms of solution quality, speed a
... Show MoreThis paper attempts to develop statistical modeling for air-conditioning analysis in Jakarta, Indonesia, during an emergency state of community activity restrictions enforcement (Emergency CARE), using a variety of parameters such as PM10, PM2.5, SO2, CO, O3, and NO2 from five IoT-based air monitoring systems. The parameters mentioned above are critical for assessing the air quality conditions and concentration of air pollutants. Outdoor air pollution concentration variations before and after the Emergency CARE, which was held in Indonesia during the COVID-19 pandemic on July 3-21, 2021, were studied. An air quality monitoring system based on the IoT generates sensor data
... Show More