In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical definition for network lifetime in the IoT is to increase the period of cooperation between objects to carry out all the assigned tasks. The main contribution in this paper is to address the problem of task allocation in the IoT as an optimization problem with a lifetime-aware model. A genetic algorithm is proposed as a task allocation protocol. For the proposed algorithm, a problem-tailored individual representation and a modified uniform crossover are designed. Further, the individual initialization and perturbation operators (crossover and mutation) are designed so as to remedy the infeasibility of any solution located or reached by the proposed genetic algorithm. The results showed reasonable performance for the proposed genetic-based task allocation protocol. Further, the results prove the necessity for designing problem-specific operators instead of adopting the canonical counterparts.
Coupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
Four complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy- 4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal acti
... Show MoreThe formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione
... Show MoreFour complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ
... Show MoreNew 1,3-oxazol-5(4H)-one(3) was synthesized by cyclization of[(4-Methyl phenyl-carbonyl)amino]acetic acid (2). The starting materials were readily obtained by acylation of 2-amino acetic acid (Glycine) with 4-methyl phenyl chloride .Imidazole(4) was synthesized by reaction of compound (3) with hydrazine hydrate (99%). Compound (4) was isolated and characterized by 1HNMR , FTIR , uv-vis spectroscopy and elemental analysis (C.H.N). Compound (4) has been used as a ligand (L) to prepare a number of metal complexes with Cr(III), Mn(II), Co(II), Ni(II) , Cu(II) and Zn(II).
The prepared complexes were isolated and characterized by FTIR and Uv-vis spectroscopy elemental analysis (C.H.N), flame atomic absorption technique, as well as magnetic
Synthesis of new heterocyclic compounds containing four five-membered rings together was the main goal of this work. The new derivatives of [tetrakis (1,2,4-triazole /1,3,4-thiadiazole /1,3,4-oxadiazole][bis-(benzene-1,3,5-triyl)] dioxymethylene A7-A18 were synthesized by the reaction of [bis-(dimethyl 5-yl-isophthalate)] dioxymethylene compound A1 which was previously prepared from the reaction of 1,2-dibromomethan and dimethyl 5-hydroxyisophthalate, then treated with hydrazine hydrate to yield the corresponding acid hydrazide A2. In the next step, compound A2 was refluxed with 4-substituted isothiocyanate to give substituted thiosemicarbazides A3-A6. The treatment of the latter compounds in basic medium of 2M o
... Show MoreA new chelate complexes of Co(II),Ni(II),Zn(II) and Cd(II) were prepared by reacting these ions with the ligand 2-[4- Carboxy methyl phenyl azo]-4,5-diphenyl imidazole (4CMeI) The preparation were conducted after fixing the optimum conditions such as (pH) and concentration .UV- visible spectra of these complex solutions were studied for a range of (pH) and concentration which obey lampert-Beers Law.The structures of complexes were deduced according to mole ratio method which were obtained from the spectroscopic studies of the complex solutions .The ratios of metal: ligand obtained were (1:2) for all complexes..(UV-Vis) absorption spectra and The infrared spectra of the chelating complexes were studied ,this may indicate that coordination be
... Show MoreThe formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione
... Show MorePulsar stars divided into two types depending on the periods of rotation, normal
emission Pulsar and Millisecond pulsars (MSPs). In this paper, the effect of the
strong magnetic field on the thermal emission in Millisecond pulsar stars is
concentrated. Also the luminosity spin down (Lsp) are calculated depends on the
periods (P), and Period derivative (
P
) for sample stars which were adopted. The
relation between internal and surface magnetic field is illustrated. The model that
which adopted is Hallo Cone Model (HCM)). The total magnetic dipole radiation
power (heating power Wh) of all super fluid neutrons in MSPs stars is calculated.
For sample stars of MSPs , the value of transition period (Ptr) was d
This research highlights one of the most important issues that have been controversial between Islamic schools, which is the duality of Intellect and Revelation and the nature of their relationship, in two core points:
The first point: Could there be a real conflict between Intellect and revelation? While the school of hadith view that this assumption is a rational assumption that does not real as long as the revelation is correct and the Intellect is clear, and that what is claimed are due to other Intellect s, we find that the Ash’ari school adopts the saying that the real conflict may occur, but rather confirms its occurrence.
The second point: For whom is the priority, for the Intellect or th
... Show More