Preferred Language
Articles
/
ijs-2951
The Numerical Solutions of Nonlinear Time-Fractional Differential Equations by LMADM
...Show More Authors

This paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Laplace Adomian and Laplace Modified Adomian Decomposition Methods for Solving Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type
...Show More Authors

In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions Of The Nonlocal Problems For The Diffusion Partial Differential Equations
...Show More Authors

    In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.

View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Iraqi Journal Of Science
An Approximation Technique for Fractional Order Delay Differential Equations
...Show More Authors

In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
The Analytic Solutions of Nonlinear Generalized Pantograph Differential Equations of Higher Order Via Coupled Adomian-Homotopy Technique
...Show More Authors

     In this study, an efficient novel technique is presented to obtain a more accurate analytical solution to nonlinear pantograph differential equations. This technique combines the Adomian decomposition method (ADM) with the homotopy analysis method concepts (HAM). The whole integral part of HAM is used instead of an integral part of ADM approach to get higher accurate results. The main advantage of this technique is that it  gives a large and more extended convergent region of iterative approximate solutions for long time intervals that rapidly converge to the exact solution. Another advantage is capable of providing a continuous representation of the approximate solutions, which gives  better information over whole time interv

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Generalized Spline Method for Integro-Differential Equations of Fractional Order
...Show More Authors

In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.

View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method
...Show More Authors

View Publication
Crossref (20)
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Stability for the Systems of Ordinary Differential Equations with Caputo Fractional Order Derivatives
...Show More Authors

     Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and  engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function  is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.

View Publication Preview PDF
Scopus (2)
Scopus Crossref