A fault is an error that has effects on system behaviour. A software metric is a value that represents the degree to which software processes work properly and where faults are more probable to occur. In this research, we study the effects of removing redundancy and log transformation based on threshold values for identifying faults-prone classes of software. The study also contains a comparison of the metric values of an original dataset with those after removing redundancy and log transformation. E-learning and system dataset were taken as case studies. The fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% after removing redundancy and log transformation, respectively. These results impacted directly the number of classes detected, which ranged between 1-20 and 1-7 for the original dataset and 1-7 and 0-3) after removing redundancy and log transformation. The Skewness of the dataset was deceased after applying the proposed model. The classified faulty classes need more attention in the next versions in order to reduce the ratio of faults or to do refactoring to increase the quality and performance of the current version of the software.
For ecosystem functions factors monitored the natural changing of environmental systems, and the managing ability expectation or prediction the plantation regions, (e.g. desert decreasing, air pollution reducing and weather wet stabilization). How, depends on the ability to understand how a particular ecosystem functions and the automation that control the elements distribution, such as (Suaeda aegyptiaca) plant in this study. Which recognized plants Iraq native, and, that are widely found in some regions of Iraq finding randomly. Amplitude plantations regions and automation wealth can be observed diffusion and growth this plantation, as well as estimated the far-reaching and unknown locations to form control and improve environmental an
... Show MoreIn this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.
Malondialdehyde (MDA) is one of many low molecular weight end-products of lipid peroxidation; it is as an index of lipid peroxidation. Uric acid is one of the endogenous oxidant-antioxidant paradoxes. The aim of this study is to evaluate the levels of serum MDA and uric acid in smokers and non smokers. This study was carried out from January to July 2012 on (30) smokers and (30) non smokers. Serum MDA level was measured spectrophotometrically using thiobarbituric acid method, whereas serum uric acid was measured using enzymatic colorimetric method. The results of the study revealed a significant increase (P<0.001) in uric acid value in smokers subject
... Show MoreThis study was undertaken to shed light on the changes of levels of CP
activity, Cu and Fe in sera of .(53) normaJ non-smoker pregnant's without complication, during three1rimestcrs of pregnancy.
G1 inc.l_ude (I 8) pre nants in the 1' 1 tri nester, G2 19) pret:,rp:all.ts _wear
taken m the 2" tnmester and G3 (16) pregnants m the 3rd trunester.
/\nothe.r ('18) ·serum samples were taken from liealthy non-pregnant wqmen
age matched as control·group G4.
Results bowed a significant steady elevation in CP .p:ctivity and &n
... Show MoreIn this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t
... Show MoreGiardia lamblia is one of most common protozoan cause diarrheas, and the most health problem in development countries worldwide. Our work aimed to assess activity and toxicity of metronidazole loaded silver nanoparticles in treatment of acute giardiasis in mice. After inoculated mice with Giardia cysts in a dose of 105 cyst for acute infection, treatments were given for eight days. Number Giardia cysts in stool were discovered. Toxicity nanoparticles was estimated by Measurement oxidative stress markers (GSH) and (MDA) in liver, kidney tissue homogenate. The results showed single therapy was better effect by silver nanoparticles, highest percentages of reduction in number of cysts Giardia lamblia of infected mice treated with silver nanopar
... Show MoreIn this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s
... Show MoreThis paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).