The peristaltic transport of power-law fluid in an elastic tapered tube with variable cross-section induced by dilating peristaltic wave is studied. The exact solution of the expression for axial velocity, radial velocity, stream function, local shear stress, volume of flow rate and pressure gradient are obtained under the assumption of long wavelength and low Reynolds number. The effects of all parameters that appear in the problem are analyzed through graphs. The results showed that the flux is sinusoidal in nature and it is an increasing function with the increase of whereas it is a decreasing function with the increase of . An opposite behavior for shear strain is noticed compared to pressure gradient. Finally, trapping phenomenon is presented to explain the physical behavior of various parameters. It is noted that the size of the trapping bolus increases with increasing whereas it decreases as increases. MATHEMATICA software is used to plot all figures.
In this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame
... Show MoreThe purpose of this study is to investigate the effect of an elastic wall on the peristaltic flow of Williamson fluid between two concentric cylinders, where the inner tube is cylindrical with an inelastic wall and the outer wall is a regular elastic sine wave. For this problem, cylindrical coordinates are used with a short wavelength relative to channel width for its length, as well as the governing equations of Williamson fluid in the Navier-Stokes equations. The results evaluated using the Mathematica software program. The Mathematica program used by entering the various data for the parameters, where the program shows the graphs, then the effect of these parameters became clear and the results mentioned in the conclusion. Williamso
... Show MoreThe purpose of this study is to calculate the effect of the elastic wall of a hollow channel of Jeffrey's fluid by peristaltic flow through two concentric cylinders. The inside tube is cylindrical and the outside is a regular elastic wall in the shape of a sine wave. Using the cylindrical coordinates and assuming a very short wavelength relative to the width of the channel to its length and using governing equations for Jeffrey’s fluid in Navier-Stokes equations, the results of the problem are obtained. Through the Mathematica program these results are analysed.
The purpose behind this paper is to discuss nanoparticles effect, porous media, radiation and heat source/sink parameter on hyperbolic tangent nanofluid of peristaltic flow in a channel type that is asymmetric. Under a long wavelength and the approaches of low Reynolds number, the governing nanofluid equations are first formulated and then simplified. Associated nonlinear differential equations will be obtained after making these approximations. Then the concentration of nanoparticle exact solution, temperature distribution, stream function, and pressure gradient will be calculated. Eventually, the obtained results will be illustrated graphically via MATHEMATICA software.
This paper studies the influence of an inclined magnetic field on peristaltic transport of incompressible Bingham plastic fluid in an inclined symmetric channel with heat transfer and mass transfer. Slip conditions for heat transfer and concentration are employed. The formulation of the problem is presented through, the regular perturbation technique for small Bingham number Bn is used to find the final expression of stream
function, the flow rate, heat distribution and concentration distribution. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effe
In this present paper , a special model was built to govern the equations of two dimensional peristaltic transport to nanofluid flow of a heat source in a tapered considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise communicates increased in case of non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA 11 program has been used to solve such system after obtaining the initial conditions. Most of the results of drawing for many are obtained via above program .
Through this article, we studied the peristaltic motion of “Hyperbolic Tangent” fluid in the geometry of curvature channel by using the analysis of large wavelength and less of Reynolds number. The matter has controlled mathematically by the partial differential equations of continuity, motion, heat transfer. In the study, we used the impact of radial magnetic force. The obtained coupled non-linear equations of above equations have solved by an approximation technical. Locked formula solutions of the stream function, axial velocity, heat function has evaluated. The influence of curvature is analysed and took it into account. The impact of sundry variables on the inflow features ha
In this paper, the effect of both rotation and magnetic field on peristaltic transport of Jeffery fluid through a porous medium in a channel are studied analytically and computed numerically. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, velocity and shear stress on the channel walls have been computed numerically. Effects of Hartman number, time mean flow, wave amplitude, porosity and rotation on the pressure gradient, pressure rise, stream function, velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartman number, time mean flow, wave a
... Show MoreIn this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.