Preferred Language
Articles
/
ijs-2934
Peristaltic Transport of Power-Law Fluid in an Elastic Tapered Tube with Variable Cross-Section Induced by Dilating Peristaltic Wave
...Show More Authors

The peristaltic transport of power-law fluid in an elastic tapered tube with variable cross-section induced by dilating peristaltic wave is studied. The exact solution of the expression for axial velocity, radial velocity, stream function, local shear stress, volume of flow rate and pressure gradient are obtained under the assumption of long wavelength and low Reynolds number. The effects of all parameters that appear in the problem are analyzed through graphs. The results showed that the flux is sinusoidal in nature and it is an increasing function with the increase of  whereas it is a decreasing function with the increase of . An opposite behavior for shear strain is noticed compared to pressure gradient.  Finally, trapping phenomenon is presented to explain the physical behavior of various parameters. It is noted that the size of the trapping bolus increases with increasing  whereas it decreases as  increases. MATHEMATICA software is used to plot all figures.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Effects of the Rotation on the Mixed Convection Heat Transfer Analysis for the Peristaltic Transport of Viscoplastic Fluid in Asymmetric Channel
...Show More Authors

      In this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame

... Show More
View Publication Preview PDF
Scopus (9)
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
The Peristaltic Flow of Williamson Fluid through a Flexible Channel
...Show More Authors

The purpose of this study is to investigate the effect of an elastic wall on the peristaltic flow of Williamson fluid between two concentric cylinders, where the inner tube is cylindrical with an inelastic wall and the outer wall is a regular elastic sine wave.  For this problem, cylindrical coordinates are used with a short wavelength relative to channel width for its length, as well as the governing equations of Williamson fluid in the Navier-Stokes equations. The results evaluated using the Mathematica software program. The Mathematica program used by entering the various data for the parameters, where the program shows the graphs, then the effect of these parameters became clear and the results mentioned in the conclusion. Williamso

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
The Peristaltic Flow of Jeffrey Fluid through a Flexible Channel
...Show More Authors

    The purpose of this study is to calculate the effect of the elastic wall of a hollow channel of Jeffrey's fluid by peristaltic flow through two concentric cylinders. The inside tube is cylindrical and the outside is a regular elastic wall in the shape of a sine wave. Using the cylindrical coordinates and assuming a very short wavelength relative to the width of the channel to its length and using governing equations for Jeffrey’s fluid in Navier-Stokes equations, the results of the problem are obtained. Through the Mathematica  program these results are  analysed.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Impact of Porous Media on Peristaltic Transport of Tangent Hyperbolic Nanofluid in Asymmetric Channel
...Show More Authors

The purpose behind this paper is to discuss nanoparticles effect, porous media, radiation and heat source/sink parameter on hyperbolic tangent nanofluid of peristaltic flow in a channel type that is asymmetric. Under a long wavelength and the approaches of low Reynolds number, the governing nanofluid equations are first formulated and then simplified. Associated nonlinear differential equations will be obtained after making these approximations. Then the concentration of nanoparticle exact solution, temperature distribution, stream function, and pressure gradient will be calculated. Eventually, the obtained results will be illustrated graphically via MATHEMATICA software.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Advances In The Theory Of Nonlinear Analysis And Its Application
The Influence of the Magnetic Domain on The Peristaltic Motion of The Non-Newtonian Fluid in A Curved Tube
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Effect of an inclined magnetic field on peristaltic flow of Bingham plastic fluid in an inclined symmetric channel with slip conditions
...Show More Authors

This paper studies the influence of an inclined magnetic field on peristaltic transport of incompressible Bingham plastic fluid in an inclined symmetric channel with heat transfer and mass transfer. Slip conditions for heat transfer and concentration are employed. The formulation of the problem is presented through, the regular perturbation technique for small Bingham number Bn is used to find the final expression of stream
function, the flow rate, heat distribution and concentration distribution. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effe

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Peristaltic Flow with Nanofluid under Effects of Heat Source, and Inclined Magnetic Field in the Tapered Asymmetric Channel through a Porous Medium
...Show More Authors

     In this present paper , a special model was built to govern the equations of  two dimensional peristaltic transport to nanofluid  flow of a heat source in a tapered  considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise  communicates increased in case of  non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA  11 program has been used to solve such system after obtaining the initial conditions.  Most of the results  of drawing  for many are obtained via above program .

View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
“Small wave number and less of Reynolds number inflow analysis in peristaltic transportation of “Hyperbolic tangent fluid” in curved channels by employing the influence of radial magnetic force”
...Show More Authors
Abstract<p>Through this article, we studied the peristaltic motion of “Hyperbolic Tangent” fluid in the geometry of curvature channel by using the analysis of large wavelength and less of Reynolds number. The matter has controlled mathematically by the partial differential equations of continuity, motion, heat transfer. In the study, we used the impact of radial magnetic force. The obtained coupled non-linear equations of above equations have solved by an approximation technical. Locked formula solutions of the stream function, axial velocity, heat function has evaluated. The influence of curvature is analysed and took it into account. The impact of sundry variables on the inflow features ha</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Effects of rotation and MHD on the Nonlinear Peristaltic Flow of a Jeffery Fluid in an Asymmetric Channel through a Porous Medium
...Show More Authors

In this paper, the effect of both rotation and magnetic field on peristaltic transport of Jeffery fluid through a porous medium in a channel are studied analytically and computed numerically. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, velocity and shear stress on the channel walls have been computed numerically. Effects of Hartman number, time mean flow, wave amplitude, porosity and rotation on the pressure gradient, pressure rise, stream function, velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartman number, time mean flow, wave a

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Powell-Eyring Fluid Peristaltic Transfer in an Asymmetric Channel and A Porous Medium under the Influence of A Rotation and an Inclined Magnetic Field
...Show More Authors

     In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.

View Publication Preview PDF
Scopus Crossref