Culex quinquefasciatus is an intermediate host of several human pathogens and serve as a vector of filariasis worldwide. Recently, there are increasing efforts to develop new and effective nanoparticles to control mosquito vectors. The green synthesis of ZnO-CuO nanoporous composite using Gum Arabic (Acacia senegalensis) was successfully carried out with Gum Arabic and the composite was characterized by UV-Visible, FTIR, and SEM/EDX techniques. Three different larval instars (1st, 2nd, and 3rd) of Culex quinquefasciatus were exposed to various concentrations (10, 20, 25 mg/l) of the ZnO-CuO nanocomposite for 24 h. The LC50 values for the 1st, 2nd, and 3rd instars were found to be 4.702, 5.459, and 5.459, respectively, while the LC90 values were 22.923, 33.922, and 33.922, respectively. The correlation coefficient values for the three instars were found to be 0.982, 0.941, and 0.941, respectively, and these indicate concentration-dependent larvicidal activity. The novel ZnO-CuO nanoporous composite could serve as a new nanolarvicide against the filariasis-transmitting vector.
The current research included obtaining the best performance specifications for a silicon device with a mono-crystalline type pn junction (pn–Si). A simulation of the device was performed by the use of a computer program in one dimension SCAPS-1D in order to reach the optimum thickness for both p and n layers and to obtain the best efficiency in performance of the pn-Si junction. The optimum device efficiency was eta (η) = 12.4236 % when the ideal thickness for the p and n layers was 5µm and 1.175µm, respectively (p=5 µm and n=1.75µm).
The research included studying the effects of different spectra of solar illumination using simulation of the device; the usual solar spectrum AM1_5 G1 sun. Spectrum
... Show MoreIraqi western desert is characterized by a widespread karst phenomenon and caves. Euphrates formation (Lower Miocene) includes enormous sinkholes and cavities within carbonate rocks that usually cause severe damages to any kind of engineering facilities built over it. 3D resistivity imaging techniques were used in detecting this kind of cavities in complicated lithology. The 3D view was fulfilled by collating seven 2D imaging lines. The 2D imaging survey was carried out by Dipole-dipole array with (n) factor and electrode spacing (a) of 6 and 2m respectively. The horizontal slices of the 3D models give a good subsurface picture. There are many caves in all directions (x, y, z). They reveal many small caves near the surface. Thes
... Show MoreIn this research constructed N2 laser system by use developed method of electric discharge. In this method used four step of electric discharge by using four capacitors, three spark gaps, high tension power supply varying in range from 12kV to 24 kV and three resistors, this method called three stage blumlein circuit. The breakdown time delay of these parallel spark gaps cement strong ultraviolet preionization in the laser channel, thus the result of these amendments the laser output is many doubled and is more increasing than that obtained using the one and two stage blumlein circuits. This system has been designed and operated to give pulse laser with wavelength at 337.1 nm. This laser system can operate without mirrors and optical res
... Show MoreIn this paper, the wear in layers of articular cartilage was calculated, parameters effective on elastic deformation were studied in normal and diseased knee joints, and relations between elastic deformation and squeeze film characteristics under lubrication condition were discussed with using a mathematical model. Conferring to the results obtained, elastic deformation effects on the performance of synovial human knee joint were analyzed from medical and dynamics perspectives. Relationships between elastic deformation and wear of layers were also discussed.
The petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. Thes
... Show MoreThe objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign
The present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreThis study is to investigate the possibility of using activated carbon prepared from Iraqi date-pits (ADP) which are produced from palm trees (Phoenix dactylifera L.) as low-cost reactive material in the permeable reactive barrier (PRB) for treating lead (Pb<sup>+2</sup>) from the contaminated groundwater, and then compare the results experimentally with other common reactive materials such as commercial activated carbon (CAC), zeolite pellets (ZP). Factors influencing sorption such as contact time, initial pH of the solution, sorbent dosage, agitation speed, and initial lead concentration has been studied. Two isotherm models were used for the description of sorption data (Langmuir and Freundlich). The maximum lead sorp
... Show More