This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. Some illustrative examples are used, where the results are given by figures that show the efficiency and accuracy for the method.
In this article, the boundary value problem of convection propagation through the permeable fin in a natural convection environment is solved by the Haar wavelet collocation method (HWCM). We also compare the solutions with the application of a semi-analytical method , namely the Temimi and Ansari (TAM), that is characterized by accuracy and efficiency.The proposed method is also characterized by simplicity and efficiency. The possibility of applying the proposed method to many types of linear or nonlinear ordinary and partial differential equations.
This paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied. The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived. Under suitable conditions, theorems of necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.
In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreIn this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi
... Show MoreIn this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
In this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.
The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.