Iris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature transformation and local binary pattern. Some sigma and threshold values were used for feature extraction, which achieved the highest rate of recognition. The programming was implemented by using MATLAB 2013. The matching was performed by applying the city block distance. The iris recognition system was built with the use of iris images for 30 individuals in the CASIA v4. 0 database. Every individual has 20 captures for left and right, with a total of 600 pictures. The main findings showed that the values of recognition rates in the proposed system are 98.67% for left eyes and 96.66% for right eyes, among thirty subjects.
Several recent approaches focused on the developing of traditional systems to measure the costs to meet the new environmental requirements, including Attributes Based Costing (ABCII). It is method of accounting is based on measuring the costs according to the Attributes that the product is designed on this basis and according to achievement levels of all the Attribute of the product attributes. This research provides the knowledge foundations of this approach and its role in the market-oriented compared to the Activity based costing as shown in steps to be followed to apply for this Approach. The research problem in the attempt to reach the most accurate Approach in the measurement of the cost of products from th
... Show MoreIn recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show MoreTo overcome the problems which associated with the standard multiple daily doses (MDD)
of aminoglycosides (AGs) like high incidence of toxicity(nephrotoxicity, ototoxicity)(5-25%) and high cost, an alternative approach was developed which was single daily dose (SDD).This new regimen was designed to maximize bacterial killing by optimizing the peak concentration/minimum inhibitory concentration(MIC)ratio and to reduce the potential for toxicity. The study includes 75 patients selected randomly, 50 of them received SDD regimen of age range of 17-79 years and the remaining received MDD regimen of age range of 13-71 years. The study was designed to evaluate the safety of SDD regim
... Show MoreInterest in belowground plant growth is increasing, especially in relation to arguments that shallow‐rooted cultivars are efficient at exploiting soil phosphorus while deep‐rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil‐filled rhizotrons, hydroponics and soil‐filled pots whose bottom was sealed with a non‐woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the Oryza
Medicines comprising fosfomycin are prescribed for urinary tract infections. These drugs are available for oral use as tromethamine and calcium, while fosfomycin-sodium and disodium are given for intravenous (IV) and intramuscular (IM). Many quantitative analytical methods have been reported to estimate Fosfomycin in blood, urine, plasma, serum, and pharmaceutical dosage formulations. Some techniques were spectrophotometric, mass spectrometry, gas chromatography, high-performance liquid chromatography, and electrochemical methods. Here we perform a rapid narrative review that discusses and comparison between them of various analytical methods for the determination of Fosfomycin-containing drugs.
In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreVarious speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression alg
... Show More